topology.py 3.9 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qiaolongfei 已提交
15 16
import collections

Q
qiaolongfei 已提交
17
import paddle.trainer_config_helpers as conf_helps
Q
qiaolongfei 已提交
18 19
from paddle.proto.ModelConfig_pb2 import ModelConfig

Q
qiaolongfei 已提交
20
import data_type
Q
qiaolongfei 已提交
21
import layer as v2_layer
Q
qiaolongfei 已提交
22 23 24 25 26 27 28 29 30 31

__all__ = ['Topology']


class Topology(object):
    """
    Topology is used to store the information about all layers
    and network configs.
    """

Q
qiaolongfei 已提交
32 33 34
    def __init__(self, layers):
        if not isinstance(layers, collections.Sequence):
            raise ValueError("input of Topology should be a list of Layer")
Q
qiaolongfei 已提交
35 36
        for layer in layers:
            if not isinstance(layer, v2_layer.LayerV2):
Q
qiaolongfei 已提交
37
                raise ValueError('layer should have type paddle.layer.Layer')
Q
qiaolongfei 已提交
38 39 40
        self.layers = layers
        self.__model_config__ = v2_layer.parse_network(*layers)
        assert isinstance(self.__model_config__, ModelConfig)
Q
qiaolongfei 已提交
41

Q
qiaolongfei 已提交
42
    def proto(self):
Q
qiaolongfei 已提交
43 44 45
        return self.__model_config__

    def get_layer(self, name):
Q
qiaolongfei 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        """
        get v2.Layer Class instance by layer name
        :param name:
        :return:
        """
        result_layer = []

        def find_layer_by_name(layer, layer_name):
            if layer.name == layer_name and len(result_layer) == 0:
                result_layer.append(layer)
            for parent_layer in layer.__parent_layers__.values():
                find_layer_by_name(parent_layer, layer_name)

        for layer in self.layers:
            find_layer_by_name(layer, name)

        return result_layer[0]

    def get_data_layer(self):
        """
        get all data layer
        :return:
        """
        data_layers = []

        def find_data_layer(layer):
            assert isinstance(layer, layer.LayerV2)
            if isinstance(layer, v2_layer.DataLayerV2):
                if len(
                        filter(lambda data_layer: data_layer.name == layer.name,
                               data_layers)) == 0:
                    data_layers.append(layer)
            for parent_layer in layer.__parent_layers__.values():
                find_data_layer(parent_layer)

        for layer in self.layers:
            find_data_layer(layer)

        return data_layers

Q
qiaolongfei 已提交
86 87
    def data_type(self):
        """
Q
qiaolongfei 已提交
88 89 90
        get data_type from proto, such as:
        [('image', dense_vector(768)), ('label', integer_value(10))]
        the order is the same with __model_config__.input_layer_names
Q
qiaolongfei 已提交
91
        """
Q
qiaolongfei 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        data_types_lists = []
        for layer_name in self.__model_config__.input_layer_names:
            data_types_lists.append(
                (layer_name, self.get_layer(layer_name).type))

        return data_types_lists


if __name__ == '__main__':
    pixel = v2_layer.data(name='pixel', type=data_type.dense_vector(784))
    label = v2_layer.data(name='label', type=data_type.integer_value(10))
    hidden = v2_layer.fc(input=pixel,
                         size=100,
                         act=conf_helps.SigmoidActivation())
    inference = v2_layer.fc(input=hidden,
                            size=10,
                            act=conf_helps.SoftmaxActivation())
    maxid = v2_layer.max_id(input=inference)
    cost1 = v2_layer.classification_cost(input=inference, label=label)
    cost2 = v2_layer.cross_entropy_cost(input=inference, label=label)

    print Topology(cost1).proto()
    print Topology(cost2).proto()
    print Topology(cost1, cost2).proto()
    print Topology(cost2).proto()
    print Topology(inference, maxid).proto()