grad_node_info.cc 19.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/grad_node_info.h"
16 17

#include "glog/logging.h"
18
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
19
#include "paddle/fluid/eager/autograd_meta.h"
20 21 22 23
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type_transform.h"
24 25 26
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
27 28 29
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
30
#include "paddle/phi/core/sparse_csr_tensor.h"
31 32

/**
33
 * Implementation of GradNodeBase, Edge and GradTensorHolder.
34
 **/
35 36
namespace egr {

37 38 39 40 41 42 43
static void CheckTensor(const paddle::experimental::Tensor& pre,
                        const paddle::experimental::Tensor& post) {
  if (!pre.initialized() && post.initialized()) {
    PADDLE_THROW(paddle::platform::errors::PermissionDenied(
        "The tensor in before and after hook are not consistent"));
  }
  if (pre.initialized() && post.initialized()) {
44 45
    VLOG(7) << phi::DataTypeToString(pre.dtype()) << " "
            << phi::DataTypeToString(post.dtype());
46
    PADDLE_ENFORCE_EQ(
47 48
        pre.dtype(),
        post.dtype(),
49 50 51
        paddle::platform::errors::PermissionDenied(
            "The dtype of tensor before(%s) and after(%s) hook are not "
            "consistent",
52 53
            phi::DataTypeToString(pre.dtype()),
            phi::DataTypeToString(post.dtype())));
54 55 56 57 58 59 60
    PADDLE_ENFORCE_EQ(pre.place(),
                      post.place(),
                      paddle::platform::errors::PermissionDenied(
                          "The place of tensor before(%s) and after(%s) "
                          "hook are not consistent",
                          pre.place().DebugString(),
                          post.place().DebugString()));
61 62 63
  }
}

64
GradNodeBase::GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num) {
J
Jiabin Yang 已提交
65
  VLOG(7) << "Construct GradNodeBase";
66 67 68 69
  bwd_in_meta_.resize(bwd_in_slot_num);
  bwd_out_meta_.resize(bwd_out_slot_num);
}

70 71 72
const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::InputMeta() const {
  return bwd_in_meta_;
73 74
}

75 76 77
const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::OutputMeta() const {
  return bwd_out_meta_;
78 79
}

80 81
paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::MutableOutputMeta() {
82 83 84
  return bwd_out_meta_;
}

85
void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
86
                                 size_t slot_rank) {
J
Jiabin Yang 已提交
87
  VLOG(7) << "Set GradSlotMeta for Grad Inputs";
88
  auto* fwd_out_meta = egr::EagerUtils::nullable_autograd_meta(fwd_out);
89
  PADDLE_ENFORCE_LE(
90 91
      slot_rank,
      (bwd_in_meta_.size() - 1),
92 93 94 95
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
96 97 98 99 100 101
  auto& metas = bwd_in_meta_.at(slot_rank);
  if (metas.size() == 0) {
    metas.resize(1);
  }

  auto& meta = metas[0];
102 103 104
  if (fwd_out_meta && fwd_out_meta->StopGradient()) {
    meta.SetStopGradient(fwd_out_meta->StopGradient());
  }
105

106
  if (!fwd_out.initialized()) {
J
Jiabin Yang 已提交
107
    VLOG(7)
108 109 110 111
        << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
    return;
  }

112
  phi::DenseTensor* dense_tensor = nullptr;
113 114 115
  // Record TensorMeta
  if (phi::DenseTensor::classof(fwd_out.impl().get())) {
    // Only Copy Meta
116 117 118 119 120
    dense_tensor = static_cast<phi::DenseTensor*>(fwd_out.impl().get());
  } else if (phi::SparseCooTensor::classof(fwd_out.impl().get())) {
    phi::SparseCooTensor* coo_tensor =
        static_cast<phi::SparseCooTensor*>(fwd_out.impl().get());
    dense_tensor = coo_tensor->mutable_non_zero_elements();
121 122 123 124
  } else if (phi::SparseCsrTensor::classof(fwd_out.impl().get())) {
    phi::SparseCsrTensor* csr_tensor =
        static_cast<phi::SparseCsrTensor*>(fwd_out.impl().get());
    dense_tensor = csr_tensor->mutable_non_zero_elements();
125
  } else {
J
Jiabin Yang 已提交
126
    VLOG(7) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
127
               "non-DenseTensor argument.";
128
  }
129
  PADDLE_ENFORCE_NE(
130 131
      dense_tensor->meta().dtype,
      phi::DataType::UNDEFINED,
132 133 134 135 136
      paddle::platform::errors::Fatal(
          "Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
          "which is illegal."));

  meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
137
  meta.SetPlace(fwd_out.place());
138

139 140
  if (dense_tensor->type() == paddle::experimental::DataType::COMPLEX64 ||
      dense_tensor->type() == paddle::experimental::DataType::COMPLEX128) {
141 142
    need_complex_to_real_ = true;
  }
143 144
}

145 146 147
void GradNodeBase::SetGradInMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_out,
    size_t slot_rank) {
J
Jiabin Yang 已提交
148
  VLOG(7) << "Set GradSlotMeta for Grad Inputs";
149
  size_t slot_size = fwd_out.size();
150
  PADDLE_ENFORCE_LE(
151 152
      slot_rank,
      (bwd_in_meta_.size() - 1),
153 154 155 156
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
157
  auto& metas = bwd_in_meta_.at(slot_rank);
158
  // Init stop gradient vector before use to avoid push back
159 160 161 162 163 164 165 166 167 168 169 170 171 172
  if (metas.size() < slot_size) {
    VLOG(7) << "Init bwd_in_meta_ with slot rank: " << slot_rank;
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    auto& meta = metas[i];
    const auto& fwd_out_tensor = fwd_out[i];
    auto* fwd_out_meta =
        egr::EagerUtils::nullable_autograd_meta(fwd_out_tensor);
    PADDLE_ENFORCE_NOT_NULL(fwd_out_meta,
                            paddle::platform::errors::PreconditionNotMet(
                                "Bwd_in_meta should only be called while "
                                "autograd_meta is not null. If you got this "
                                "error, it indicates bugs in framework."));
173
    if (fwd_out_meta && fwd_out_meta->StopGradient()) {
174 175 176 177 178
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(fwd_out_meta->StopGradient());
    }

179
    if (!fwd_out_tensor.initialized()) {
J
Jiabin Yang 已提交
180
      VLOG(7)
181 182 183 184
          << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
      return;
    }

185 186 187 188 189 190 191
    // Record TensorMeta
    if (phi::DenseTensor::classof(fwd_out_tensor.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_out_tensor.impl().get());

      PADDLE_ENFORCE_NE(
192 193
          dense_tensor->meta().dtype,
          phi::DataType::UNDEFINED,
194 195 196 197
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
198
      meta.SetPlace(fwd_out_tensor.place());
199

200 201
      if (dense_tensor->type() == paddle::experimental::DataType::COMPLEX64 ||
          dense_tensor->type() == paddle::experimental::DataType::COMPLEX128) {
202 203 204
        need_complex_to_real_ = true;
      }
    } else {
J
Jiabin Yang 已提交
205
      VLOG(7) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
206 207 208
                 "with non-DenseTensor argument.";
    }
  }
209 210
}

211
void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
212
                                  size_t slot_rank) {
213
  auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in);
214
  PADDLE_ENFORCE_LE(
215 216
      (slot_rank + 1),
      bwd_out_meta_.size(),
217 218 219 220
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
221
  auto& metas = bwd_out_meta_.at(slot_rank);
222
  // Init stop gradient vector before use to avoid push back
223 224 225 226
  if (metas.size() == 0) {
    metas.resize(1);
  }
  auto& meta = metas[0];
227
  // Set Stop_gradient
228 229
  if (fwd_in_meta) {
    meta.SetStopGradient(fwd_in_meta->StopGradient());
230 231
  } else {
    meta.SetStopGradient(true);
232
  }
233 234 235 236 237 238 239
  // Set Adj Edges
  if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
    auto node = fwd_in_meta->GetMutableGradNode();
    if (!node || !node.get()) {
      fwd_in_meta->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
    }
240
    VLOG(3) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
241 242 243
            << this->name() << " (addr: " << this << ") "
            << " to " << fwd_in_meta->GetMutableGradNode()->name()
            << " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";
244

245 246
    meta.SetEdge(fwd_in_meta->GetMutableGradNode(), fwd_in_meta->OutRankInfo());
  }
247 248 249 250 251 252 253
  // Record TensorMeta
  if (fwd_in.impl() && fwd_in.impl().get()) {
    if (phi::DenseTensor::classof(fwd_in.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_in.impl().get());
      PADDLE_ENFORCE_NE(
254 255
          dense_tensor->meta().dtype,
          phi::DataType::UNDEFINED,
256 257 258 259
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
260
      meta.SetPlace(fwd_in.place());
261
    }
262
  } else {
J
Jiabin Yang 已提交
263
    VLOG(7) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
264
               "non-DenseTensor argument.";
265 266 267
  }
}

268 269 270
void GradNodeBase::SetGradOutMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_in, size_t slot_rank) {
  size_t slot_size = fwd_in.size();
271
  PADDLE_ENFORCE_LE(
272 273
      slot_rank,
      (bwd_out_meta_.size() - 1),
274 275 276 277
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
278
  auto& metas = bwd_out_meta_.at(slot_rank);
279
  // Init stop gradient vector before use to avoid push back
280 281 282 283 284 285 286
  if (metas.size() < slot_size) {
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    const auto& fwd_in_tensor = fwd_in[i];
    auto& meta = metas[i];
    auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in_tensor);
287
    // Set Stop_gradient
288 289 290
    if (fwd_in_meta) {
      meta.SetStopGradient(fwd_in_meta->StopGradient());
    }
291
    // Set Adj Edges
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
      auto node = fwd_in_meta->GetMutableGradNode();
      if (!node || !node.get()) {
        fwd_in_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
      }
      VLOG(3) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
              << this->name() << " (addr: " << this << ") "
              << " to " << fwd_in_meta->GetMutableGradNode()->name()
              << " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";

      meta.SetEdge(fwd_in_meta->GetMutableGradNode(),
                   fwd_in_meta->OutRankInfo());
    }
    // Record TensorMeta
    if (fwd_in_tensor.impl() && fwd_in_tensor.impl().get()) {
      if (phi::DenseTensor::classof(fwd_in_tensor.impl().get())) {
        // Only Copy Meta
        phi::DenseTensor* dense_tensor =
            static_cast<phi::DenseTensor*>(fwd_in_tensor.impl().get());
        PADDLE_ENFORCE_NE(dense_tensor->dtype(),
                          phi::DataType::UNDEFINED,
                          paddle::platform::errors::Fatal(
                              "Attempting to copy DenseTensorMeta "
                              "with phi::DataType::UNDEFINED,"
                              "which is illegal."));
        meta.SetTensorMeta(dense_tensor->meta());
        meta.SetPlace(fwd_in_tensor.place());
      }
    } else {
      VLOG(7)
          << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
             "non-DenseTensor argument.";
    }
  }
}

void GradNodeBase::SetGradOutMeta(
    const std::vector<const paddle::experimental::Tensor*>& fwd_in,
    size_t slot_rank) {
  size_t slot_size = fwd_in.size();
  PADDLE_ENFORCE_LE(
      slot_rank,
      (bwd_out_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
  auto& metas = bwd_out_meta_.at(slot_rank);
  // Init stop gradient vector before use to avoid push back
  if (metas.size() < slot_size) {
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    const auto& fwd_in_tensor = (*fwd_in[i]);
    auto& meta = metas[i];
    auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in_tensor);
    // Set Stop_gradient
    if (fwd_in_meta) {
      meta.SetStopGradient(fwd_in_meta->StopGradient());
    }
    // Set Adj Edges
354 355 356 357 358 359
    if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
      auto node = fwd_in_meta->GetMutableGradNode();
      if (!node || !node.get()) {
        fwd_in_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
      }
360
      VLOG(3) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
361 362 363
              << this->name() << " (addr: " << this << ") "
              << " to " << fwd_in_meta->GetMutableGradNode()->name()
              << " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";
364

365 366 367
      meta.SetEdge(fwd_in_meta->GetMutableGradNode(),
                   fwd_in_meta->OutRankInfo());
    }
368 369 370 371 372 373
    // Record TensorMeta
    if (fwd_in_tensor.impl() && fwd_in_tensor.impl().get()) {
      if (phi::DenseTensor::classof(fwd_in_tensor.impl().get())) {
        // Only Copy Meta
        phi::DenseTensor* dense_tensor =
            static_cast<phi::DenseTensor*>(fwd_in_tensor.impl().get());
374 375
        PADDLE_ENFORCE_NE(dense_tensor->dtype(),
                          phi::DataType::UNDEFINED,
376
                          paddle::platform::errors::Fatal(
377 378
                              "Attempting to copy DenseTensorMeta "
                              "with phi::DataType::UNDEFINED,"
379 380
                              "which is illegal."));
        meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
381
        meta.SetPlace(fwd_in_tensor.place());
382 383
      }
    } else {
J
Jiabin Yang 已提交
384
      VLOG(7)
385 386
          << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
             "non-DenseTensor argument.";
387
    }
388
  }
389 390 391 392 393 394 395 396 397
}

void GradNodeBase::SetDefaultGradInOutMeta() {
  PADDLE_ENFORCE((bwd_out_meta_.size() == 1) && (bwd_in_meta_.size() == 1),
                 paddle::platform::errors::PreconditionNotMet(
                     "We can only support 1 input and 1 output in default grad "
                     "meta setter, other size of inputs and outputs should "
                     "create with Setter and Getters"));
  // Default stop_gradient is false and slot id is 0, slot size is 1;
398 399
  bwd_out_meta_[0].resize(1);
  bwd_in_meta_[0].resize(1);
400 401
}

402 403 404 405 406
int64_t GradNodeBase::RegisterGradientHook(
    size_t slot_id, size_t rank, std::shared_ptr<egr::TensorHook>&& hook) {
  gradient_hooks_.emplace(next_hook_id_,
                          std::make_tuple(slot_id, rank, std::move(hook)));
  return next_hook_id_++;
407 408
}

409 410
paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                     kSlotSmallVectorSize>
411
GradNodeBase::ApplyGradientHooks(
412 413 414 415 416
    const paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                               kSlotSmallVectorSize>& tensors) {
  paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                       kSlotSmallVectorSize>
      outs(tensors.size());
417 418 419 420 421
  for (auto& hook_pair : gradient_hooks_) {
    size_t slot_id = std::get<0>(hook_pair.second);
    size_t rank = std::get<1>(hook_pair.second);

    auto hook = std::get<2>(hook_pair.second);
422 423 424 425 426 427 428 429 430 431 432 433

    PADDLE_ENFORCE(slot_id < tensors.size(),
                   paddle::platform::errors::Fatal(
                       "Slot_id from registered hook should be smaller than "
                       "slot size of grad_tensors"));

    PADDLE_ENFORCE(rank < tensors[slot_id].size(),
                   paddle::platform::errors::Fatal(
                       "rank of slot %d from registered hook should be smaller "
                       "than rank size of grad_tensors",
                       slot_id));

434
    std::vector<paddle::experimental::Tensor>& slot_out = outs[slot_id];
435
    slot_out.resize(tensors[slot_id].size());
436
    paddle::experimental::Tensor& out = slot_out[rank];
437
    if (!out.defined() || !out.initialized()) {
438
      out = (*hook)(tensors[slot_id][rank]);
439
    } else {
440
      // If more than one hook is registered, the input to the next hook func
441
      // should be the output of the previous hook
442
      out = (*hook)(out);
443 444 445 446 447 448 449 450 451 452 453 454
    }
  }

  for (size_t i = 0; i < outs.size(); i++) {
    if (outs[i].empty() && (!tensors[i].empty())) {
      outs[i].resize(tensors[i].size());
    }
    // TODO(Jiabin): Optimize this if we only add hook slot by slot
    for (size_t j = 0; j < outs[i].size(); j++) {
      if (!outs[i][j].defined() || !outs[i][j].initialized()) {
        outs[i][j] = tensors[i][j];
      }
455
      CheckTensor(tensors[i][j], outs[i][j]);
456 457 458 459 460 461
    }
  }

  return outs;
}

462
void GradNodeBase::HandleComplexGradToRealGrad(
463 464
    paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                         kSlotSmallVectorSize>* out_grads) {
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
  for (size_t slot_id = 0; slot_id < out_grads->size(); slot_id++) {
    const std::vector<paddle::experimental::Tensor>& slot_out_grads =
        (*out_grads)[slot_id];
    for (size_t rank_id = 0; rank_id < slot_out_grads.size(); rank_id++) {
      const GradSlotMeta& slot_meta = bwd_out_meta_[slot_id][rank_id];

      PADDLE_ENFORCE(
          slot_meta.HasTensorMeta() > 0,
          paddle::platform::errors::Fatal(
              "We require TensorMeta in GradInputMeta() to obtain forward data "
              "types."
              "However, no TensorMeta is detected in bwd_out_meta_."));

      auto fwd_data_type = paddle::framework::TransToProtoVarType(
          slot_meta.GetTensorMeta().dtype);
      const paddle::experimental::Tensor& grad = slot_out_grads[rank_id];

      if (paddle::framework::IsComplexType(fwd_data_type)) continue;

      // Only Handle Complex To Real for DenseTensor for now
      if (phi::DenseTensor::classof(grad.impl().get())) {
        phi::DenseTensor* grad_dense_tensor =
            static_cast<phi::DenseTensor*>(grad.impl().get());

        auto curr_data_type =
            paddle::framework::TransToProtoVarType(grad_dense_tensor->type());
        if (!paddle::framework::IsComplexType(curr_data_type)) continue;

        // Convert Complex GradOut to Real
        auto out = std::make_shared<phi::DenseTensor>();
495 496
        paddle::framework::TransComplexToReal(
            fwd_data_type, curr_data_type, *grad_dense_tensor, out.get());
497 498 499 500 501 502 503

        (*out_grads)[slot_id][rank_id].set_impl(out);
      }
    }
  }
}

504
}  // namespace egr