base.py 30.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
S
songyouwei 已提交
15
import decorator
16
import inspect
17
import sys
18
import numpy as np
19 20 21 22
from paddle.base import core
from paddle.base import framework
from paddle.base.framework import global_var
from paddle.base.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
23
from .tracer import Tracer
24
from ..data_feeder import convert_dtype
L
Leo Chen 已提交
25
import warnings
26
from ..framework import _get_paddle_place
27
import paddle
28
import warnings
29

30
__all__ = [
31 32 33 34 35 36 37 38
    'no_grad',
    'no_grad_',
    'grad',
    'guard',
    'enable_dygraph',
    'disable_dygraph',
    'enabled',
    'to_variable',
39
]
40

41
NON_PERSISTABLE_VAR_NAME_SUFFIX = "__non_persistable"
42 43


44
def in_to_static_mode():
45
    """
H
hjyp 已提交
46
    Return a bool value that indicates whether running code under `@to_static`
47 48

    """
49
    return global_var._in_to_static_mode_
50

51

52 53 54 55 56
# TODO(Aurelius84): Need to remove this alias after clean usage in PaddleX
in_declarative_mode = in_to_static_mode


def to_static_unsupport_argument_warning(
57 58
    func_name, input_names, inputs, support_values
):
59 60 61 62 63 64 65 66
    """
    Warning if inputs do not elementwisely equals to support_values.
    It's a utility function for dy2static when dygraph interface have
    more inputs than static interface such as paddle.grad.

    """
    for name, inp, sup in zip(input_names, inputs, support_values):
        if inp != sup:
67 68 69 70
            warnings.warn(
                f"{func_name} has unsupported parameter in jit: "
                + f"{name}, jit will discard it"
            )
71 72


73 74 75 76 77 78 79 80 81 82 83
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


84
@signature_safe_contextmanager
85
def _to_static_mode_guard_(is_to_static=True):
86
    global global_var
87 88
    original_val = global_var._in_to_static_mode_
    global_var._in_to_static_mode_ = is_to_static
89
    yield
90
    global_var._in_to_static_mode_ = original_val
91 92


93 94 95 96 97 98
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
99 100 101 102 103
    try:
        yield
    finally:
        if tracer:
            tracer._enable_program_desc_tracing = original_val
104 105


106 107
@signature_safe_contextmanager
def param_guard(parameters):
108
    # Note: parameters is a reference of self._parameters or self._buffers
109
    if in_to_static_mode() and not paddle.in_dynamic_mode() and parameters:
X
xiongkun 已提交
110 111 112 113 114 115 116 117 118 119 120
        try:
            origin_parameters = parameters.copy()
            for name, var_base in parameters.items():
                if isinstance(var_base, list):
                    new_var = [_convert_into_variable(var) for var in var_base]
                else:
                    new_var = _convert_into_variable(var_base)
                parameters[name] = new_var
            yield
        finally:
            parameters.update(origin_parameters)
121 122 123 124
    else:
        yield


J
Jiabin Yang 已提交
125
def _convert_into_variable(tensor):
126
    """
127
    Convert Tensor into Variable.
128
    """
W
wanghuancoder 已提交
129
    if isinstance(tensor, core.eager.Tensor):
130
        # Check whether has been created before.
J
Jiabin Yang 已提交
131
        new_var = tensor.block._find_var_recursive(tensor.name)
132 133
        if new_var is not None:
            assert isinstance(new_var, framework.Variable)
W
wanghuancoder 已提交
134 135
        # Convert EagerParamBase into Parameter with same attributes in dy2stat.
        elif isinstance(tensor, framework.EagerParamBase):
J
Jiabin Yang 已提交
136
            new_var = tensor._to_static_var(to_parameter=True)
137
        else:
W
wanghuancoder 已提交
138
            # Note(Aurelius84): Convert Tensor in self._buffers into Variable with
139
            # same attributes and set persistable=True to allow saving this var.
W
wanghuancoder 已提交
140
            # Because users can create a Tensor in `__init__`  like a
141 142 143 144
            # `mask` Tensor or `hidden_0` in RNN layers, which is equivalent to a Parameter
            # and necessary for inferring. It will be pruned if it's not necessary for inferring.

            # But if its shape is empty while created from `create_variable()`, we consider this buffer
145 146 147 148
            # non-persistable. See case of `dropout_state` in lstm api.
            is_persistable = True
            if tensor.name.endswith(NON_PERSISTABLE_VAR_NAME_SUFFIX):
                is_persistable = False
149

150 151 152
            new_var = tensor._to_static_var(
                to_parameter=False, persistable=is_persistable
            )
153 154 155 156 157 158 159 160 161
        # add param into parameter recorder to collect all the params used in this program.
        if new_var.persistable is True:
            from paddle.jit.dy2static.program_translator import (
                ProgramTranslator,
            )

            ProgramTranslator.get_instance()._params_recorder.add(
                tensor.block.program, tensor
            )
162 163
        return new_var
    else:
J
Jiabin Yang 已提交
164
        return tensor
165 166


167
def enabled():
168 169
    """
    This function checks whether the program runs in dynamic graph mode or not.
170 171 172
    You can enter dynamic graph mode with :ref:`api_base_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_base_dygraph_enable_dygraph`
    and :ref:`api_base_dygraph_disable_dygraph` api .
173 174

    **Note**:
175 176
        ``base.dygraph.enabled`` is the alias of ``base.in_dygraph_mode``, and
        ``base.in_dygraph_mode`` is recommended to use for now.
177 178 179 180 181 182 183

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

184
            import paddle.base as base
185

186 187 188 189
            base.enable_dygraph()  # Now we are in dygragh mode
            print(base.dygraph.enabled())  # True
            base.disable_dygraph()
            print(base.dygraph.enabled())  # False
190
    """
J
Jiabin Yang 已提交
191
    # TODO(jiabin): Make this check as in_dygraph_mode when we support default eager mode.
姜永久 已提交
192
    return framework.in_dygraph_mode()
193 194


195 196
def enable_dygraph(place=None):
    """
197 198 199 200 201

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn OFF static graph mode. You can turn ON static graph mode by `enable_static <./disable_dygraph_en.html>`_ .
202 203

    Parameters:
204
        place(paddle.CPUPlace|paddle.CUDAPlace|str, optional): Place to run dynamic graph. Default: None. Which means that the running place will be
205 206
            determined according to the way of paddle compilation. If ``place`` is string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
            index of the GPUs.
207 208 209 210 211 212 213

    return:
        None

    Examples:
        .. code-block:: python

214 215 216 217
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
218
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
219 220 221

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
222 223

    """
224 225 226
    global global_var
    if global_var._functional_dygraph_context_manager is None:
        global_var._functional_dygraph_context_manager = guard(
227 228
            place=_get_paddle_place(place)
        )
229
        global_var._functional_dygraph_context_manager.__enter__()
230

H
hong 已提交
231 232 233
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

234 235 236

def disable_dygraph():
    """
237 238 239 240 241

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn ON static graph mode. You can turn ON static graph mode by `disable_static <./enable_dygraph_en.html>`_ .
242 243 244 245 246 247 248

    return:
        None

    Examples:
        .. code-block:: python

249 250 251 252
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
253
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
254 255 256

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
257 258

    """
259 260 261 262
    global global_var
    if global_var._functional_dygraph_context_manager is not None:
        global_var._functional_dygraph_context_manager.__exit__(*sys.exc_info())
        global_var._functional_dygraph_context_manager = None
263 264


265 266 267 268
@signature_safe_contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
269 270
        has_grad = tracer._has_grad
        tracer._has_grad = is_train
271 272 273
        try:
            yield
        finally:
274
            tracer._has_grad = has_grad
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    else:
        yield


def no_grad(func=None):
    """
    :api_attr: imperative

    Create a context which disables dygraph gradient calculation.
    In this mode, the result of every computation will have `stop_gradient=True`.

    Also functions as a decorator. (Make sure to instantiate without parenthesis.)

    Examples:

     .. code-block:: python

        import numpy as np
293
        import paddle.base as base
294 295 296 297

        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
298 299 300 301
        with base.dygraph.guard():
            l0 = base.Linear(2, 2)  # l0.weight.gradient() is None
            l1 = base.Linear(2, 2)
            with base.dygraph.no_grad():
302 303
                # l1.weight.stop_gradient is False
                tmp = l1.weight * 2  # tmp.stop_gradient is True
304
            x = base.dygraph.to_variable(data)
305 306 307 308 309 310 311 312
            y = l0(x) + tmp
            o = l1(y)
            o.backward()
            print(tmp.gradient() is None)  # True
            print(l0.weight.gradient() is None)  # False

        # use as decorator

313
        @base.dygraph.no_grad
314
        def test_layer():
315
            with base.dygraph.guard():
316
                inp = np.ones([3, 1024], dtype='float32')
317 318 319
                t = base.dygraph.base.to_variable(inp)
                linear1 = base.Linear(1024, 4, bias_attr=False)
                linear2 = base.Linear(4, 4)
320 321 322 323 324 325
                ret = linear1(t)
                dy_ret = linear2(ret)

        test_layer()

    """
326
    if in_to_static_mode():
327 328 329
        warnings.warn(
            "paddle.no_grad is only supported for inference model, and not supported for training under @to_static."
        )
330 331 332 333 334 335 336 337 338 339 340 341
    if func is None:
        return _switch_tracer_mode_guard_(is_train=False)
    else:

        @decorator.decorator
        def __impl__(func, *args, **kwargs):
            with _switch_tracer_mode_guard_(is_train=False):
                return func(*args, **kwargs)

        return __impl__(func)


342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
class _DecoratorContextManager:
    """Allow a context manager to be used as a decorator"""

    def __call__(self, func):
        @decorator.decorator
        def _decorate_function(func, *args, **kwargs):
            with self:
                return func(*args, **kwargs)

        @decorator.decorator
        def _decorate_generator(func, *args, **kwargs):
            gen = func(*args, **kwargs)
            with self:
                for x in gen:
                    yield x

        if inspect.isgeneratorfunction(func):
            return _decorate_generator(func)
        else:
            return _decorate_function(func)

    def __enter__(self):
        raise NotImplementedError

    def __exit__(self, exc_type, exc_value, traceback):
        raise NotImplementedError

    def clone(self):
        # override this method if your children class takes __init__ parameters
        return self.__class__()


def is_grad_enabled():
    """
    Returns whether current dygraph gradient calculation mode is enabled.

    Returns:
        bool: True if current dygraph gradient calculation mode is enabled, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            # Dygraph gradient calculation mode is enabled by default.
            paddle.is_grad_enabled() # True

            with paddle.set_grad_enabled(False):
                paddle.is_grad_enabled() # False

            paddle.enable_static()
            paddle.is_grad_enabled() # False
    """
    tracer = framework._dygraph_tracer()
    return tracer._has_grad if tracer else False


def _set_grad_enabled(mode):
    tracer = framework._dygraph_tracer()
    if tracer:
        tracer._has_grad = mode


class set_grad_enabled(_DecoratorContextManager):
    """
    Create a context which enables or disables dygraph gradient calculation.

    Args:
        mode(bool): whether to enable (`True`), or disable (`False`) grad.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1.], stop_gradient=False)
            is_train = False
            with paddle.set_grad_enabled(is_train):
                y = x * 2
            assert(y.stop_gradient == True)

            paddle.set_grad_enabled(True)
            y = x * 2
            assert(y.stop_gradient == False)

            paddle.set_grad_enabled(False)
            y = x * 2
            assert(y.stop_gradient == True)
    """

    def __init__(self, mode):
        self.prev = is_grad_enabled()
        _set_grad_enabled(mode)
        self.mode = mode

    def __enter__(self):
        ...

    def __exit__(self, *args):
        _set_grad_enabled(self.prev)

    def clone(self):
        return self.__class__(self.mode)


class no_grad_(_DecoratorContextManager):
450
    """
451 452
    :api_attr: imperative

453
    Create a context which disables dygraph gradient calculation.
454 455
    In this mode, the result of every computation will have `stop_gradient` set
    to `True`.
456

457
    Also functions as a decorator. (Make sure to use an instance.)
458 459 460 461 462 463

    Examples:

     .. code-block:: python

        import numpy as np
464
        import paddle
465

466 467 468
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
469 470 471
        l0 = paddle.nn.Linear(2, 2)  # l0.weight.gradient() is None
        l1 = paddle.nn.Linear(2, 2)
        with paddle.no_grad():
472 473
            # l1.weight.stop_gradient is False
            tmp = l1.weight * 2  # tmp.stop_gradient is True
474
        x = paddle.to_tensor(data)
475 476 477 478 479
        y = l0(x) + tmp
        o = l1(y)
        o.backward()
        print(tmp.gradient() is None)  # True
        print(l0.weight.gradient() is None)  # False
480 481 482

        # use as decorator

483
        @paddle.no_grad()
484
        def test_layer():
485
            inp = np.ones([3, 1024], dtype='float32')
486 487 488
            t = paddle.to_tensor(inp)
            linear1 = paddle.nn.Linear(1024, 4, bias_attr=False)
            linear2 = paddle.nn.Linear(4, 4)
489 490
            ret = linear1(t)
            dy_ret = linear2(ret)
491 492 493 494

        test_layer()
    """

495 496 497
    def __enter__(self):
        self.prev = is_grad_enabled()
        _set_grad_enabled(False)
498

499 500
    def __exit__(self, *args):
        _set_grad_enabled(self.prev)
501

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

class enable_grad(_DecoratorContextManager):
    """
    :api_attr: imperative

    Create a context which enable dygraph gradient calculation,
    if it has been disabled by `no_grad` or `set_grad_enabled`.

    In this mode, the result of every computation will have `stop_gradient` set
    to `False`.

    Also functions as a decorator. (Make sure to use an instance.)

    Examples:

     .. code-block:: python

        import paddle

        # use as generator

        x = paddle.to_tensor([1.], stop_gradient=False)
        with paddle.no_grad():
            with paddle.enable_grad():
                y = x * 2
        assert(y.stop_gradient == False)
        y.backward()
        assert(x.grad is not None)

        # use as decorator

        @paddle.enable_grad()
        def double(x):
            return x * 2

        with paddle.no_grad():
            z = double(x)

        assert(z.stop_gradient == False)
    """
542 543

    def __enter__(self):
544 545
        self.prev = is_grad_enabled()
        _set_grad_enabled(True)
546 547

    def __exit__(self, *args):
548
        _set_grad_enabled(self.prev)
549 550


S
rename  
sneaxiy 已提交
551
@signature_safe_contextmanager
P
Paddle CI 已提交
552
def guard(place=None):
553
    """
554 555
    :api_attr: imperative

556
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
557

558
    Parameters:
559
        place(base.CPUPlace| base.CUDAPlace|str, optional): Place to execute dygraph.
560 561 562
            If None, the running place will be determined according to the way of paddle compilation.
            If ``place`` is string, It can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None
563 564 565 566 567 568 569 570 571

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
572
        import paddle.base as base
573

574
        with base.dygraph.guard():
575
            inp = np.ones([3, 1024], dtype='float32')
576 577 578
            t = base.dygraph.base.to_variable(inp)
            linear1 = base.Linear(1024, 4, bias_attr=False)
            linear2 = base.Linear(4, 4)
579 580
            ret = linear1(t)
            dy_ret = linear2(ret)
581 582

    """
583 584
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
585
    tracer = Tracer()
M
minqiyang 已提交
586

587
    if place is not None:
588
        expected_place = _get_paddle_place(place)
589 590
    else:
        expected_place = framework._current_expected_place()
M
minqiyang 已提交
591

592 593
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
594
            with framework._dygraph_guard(tracer):
595
                with framework._dygraph_place_guard(expected_place):
P
Paddle CI 已提交
596
                    yield
597 598


599
@framework.non_static_only
600 601 602 603 604 605 606 607 608 609
def grad(
    outputs,
    inputs,
    grad_outputs=None,
    retain_graph=None,
    create_graph=False,
    only_inputs=True,
    allow_unused=False,
    no_grad_vars=None,
):
610
    '''
Z
Zeng Jinle 已提交
611
    .. note::
612
        **This API is ONLY available in imperative mode.**
Z
Zeng Jinle 已提交
613 614 615 616

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
617
        outputs (Tensor|list(Tensor)|tuple(Tensor)): the output Tensor or
618
            Tensor list/tuple of the graph to compute gradients.
619
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or
620
            Tensor list/tuple of the graph to compute gradients. The returned
621 622 623 624 625
            values of this API are the gradients of `inputs` .
        grad_outputs (Tensor|list(Tensor|None)|tuple(Tensor|None), optional):
            initial gradient values of `outputs` . If `grad_outputs` is None,
            the initial gradient values of `outputs` would be Tensors filled with 1;
            if `grad_outputs` is not None, it must have the same length as `outputs` ,
Z
Zeng Jinle 已提交
626
            and in this case, the initial gradient value of the i-th `outputs` would
627
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs`
Z
Zeng Jinle 已提交
628
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
629
            `grad_outputs` is a Tensor. Default None.
630 631 632
        retain_graph (bool, optional): whether to retain the forward graph which
            is used to calculate the gradient. When it is True, the graph would
            be retained, in which way users can calculate backward twice for the
Z
Zeng Jinle 已提交
633
            same graph. When it is False, the graph would be freed. Default None,
634
            which means it is equal to `create_graph` .
Z
Zeng Jinle 已提交
635 636 637 638 639
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
640 641
            `inputs` . If it is False, the gradients of all remaining leaf
            Tensors in the graph would be also computed and accumulated.
Z
Zeng Jinle 已提交
642 643
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
644 645 646 647
            not supported yet.
        allow_unused (bool, optional): whether to raise error or return None if some
            Tensors of `inputs` are unreachable in the graph. If some Tensors of
            `inputs` are unreachable in the graph (i.e., their gradients are None),
Z
Zeng Jinle 已提交
648 649
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
650
        no_grad_vars (Tensor|list(Tensor)|tuple(Tensor)|set(Tensor), optional):
651
            the Tensors whose gradients are not needed to compute. Default None.
Z
Zeng Jinle 已提交
652 653

    Returns:
654 655
        list: a list of Tensors, whose length is the same as the Tensor number
        inside `inputs`, and the i-th returned Tensor is the sum of gradients of
Z
Zeng Jinle 已提交
656 657
        `outputs` with respect to the i-th `inputs`.

658
    Examples:
Z
Zeng Jinle 已提交
659
        .. code-block:: python
660
            :name: code-example-1
Z
Zeng Jinle 已提交
661

662
            import paddle
Z
Zeng Jinle 已提交
663 664

            def test_dygraph_grad(create_graph):
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
                x = paddle.ones(shape=[1], dtype='float32')
                x.stop_gradient = False
                y = x * x

                # Since y = x * x, dx = 2 * x
                dx = paddle.grad(
                        outputs=[y],
                        inputs=[x],
                        create_graph=create_graph,
                        retain_graph=True)[0]

                z = y + dx

                # If create_graph = False, the gradient of dx
                # would not be backpropagated. Therefore,
                # z = x * x + dx, and x.gradient() = 2 * x = 2.0

                # If create_graph = True, the gradient of dx
                # would be backpropagated. Therefore,
                # z = x * x + dx = x * x + 2 * x, and
                # x.gradient() = 2 * x + 2 = 4.0

                z.backward()
                return x.gradient()

            print(test_dygraph_grad(create_graph=False)) # [2.]
Z
Zeng Jinle 已提交
691 692 693
            print(test_dygraph_grad(create_graph=True)) # [4.]

        .. code-block:: python
694
            :name: code-example-2
Z
Zeng Jinle 已提交
695

696
            import paddle
Z
Zeng Jinle 已提交
697 698

            def test_dygraph_grad(grad_outputs=None):
699
                x = paddle.to_tensor(2.0)
Z
Zeng Jinle 已提交
700 701 702
                x.stop_gradient = False

                y1 = x * x
703
                y2 = x * 3
Z
Zeng Jinle 已提交
704 705 706 707 708 709 710 711 712 713 714

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

715
                dx = paddle.grad(
716
                    outputs=[y1, y2],
Z
Zeng Jinle 已提交
717 718 719 720 721
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

722
            grad_value = paddle.to_tensor(4.0)
Z
Zeng Jinle 已提交
723 724 725 726
            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
727
            print(test_dygraph_grad([None, grad_value])) # [16.]
Z
Zeng Jinle 已提交
728 729

            # dy1 = [4], dy2 = [1]
730
            print(test_dygraph_grad([grad_value, None])) # [19.]
Z
Zeng Jinle 已提交
731 732

            # dy1 = [3], dy2 = [4]
733
            grad_y1 = paddle.to_tensor(3.0)
734
            print(test_dygraph_grad([grad_y1, grad_value])) # [24.]
735
    '''
736
    if in_to_static_mode():
737 738 739
        # In dy2static context, we call static interface `gradients`
        # to calculate grads.
        from paddle.static import gradients
740

741
        to_static_unsupport_argument_warning(
742 743 744
            "paddle.grad",
            ["retain_graph", "create_grad", "only_inputs", "allow_unused"],
            [retain_graph, create_graph, only_inputs, allow_unused],
745 746
            [None, False, True, False],
        )
747
        return gradients(outputs, inputs, grad_outputs, no_grad_vars)
Z
Zeng Jinle 已提交
748

749 750 751 752 753 754
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
W
wanghuancoder 已提交
755 756 757
                assert isinstance(
                    each_var, core.eager.Tensor
                ), "Elements of {} must be Tensor".format(name)
758 759
            return in_out_list
        else:
W
wanghuancoder 已提交
760 761 762
            assert isinstance(
                in_out_list, core.eager.Tensor
            ), "{} must be Tensor or list of Tensor".format(name)
763 764 765 766 767 768 769 770 771 772 773
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
W
wanghuancoder 已提交
774 775 776
                assert isinstance(
                    each_var, core.eager.Tensor
                ), "grad_outputs must be None, a Variable or a list containing None or Variables"
777 778 779 780 781
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
782 783
            outputs
        ), "The length of grad_outputs must be equal to outputs"
784

Z
Zeng Jinle 已提交
785 786
    if no_grad_vars is None:
        no_grad_vars = []
W
wanghuancoder 已提交
787
    elif isinstance(no_grad_vars, core.eager.Tensor):
Z
Zeng Jinle 已提交
788
        no_grad_vars = [no_grad_vars]
789 790
    elif isinstance(no_grad_vars, core.eager.Tensor):
        no_grad_vars = [no_grad_vars]
Z
Zeng Jinle 已提交
791 792 793
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
W
wanghuancoder 已提交
794 795 796
            assert isinstance(
                var, core.eager.Tensor
            ), "no_grad_vars can only contains Tensor"
797
    else:
798 799 800
        raise AssertionError(
            "no_grad_vars must be None, Tensor or list/tuple/set of Tensors"
        )
801 802 803

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
804 805 806
    if retain_graph is None:
        retain_graph = create_graph

807 808 809
    assert isinstance(
        retain_graph, bool
    ), "retain_graph must be None, True or False"
Z
Zeng Jinle 已提交
810 811 812 813 814 815

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

816 817 818 819 820 821 822 823 824 825
    return core.eager.run_partial_grad(
        outputs,
        inputs,
        grad_outputs,
        retain_graph,
        create_graph,
        only_inputs,
        allow_unused,
        no_grad_vars,
    )
826 827


828
@framework.dygraph_only
829
def to_variable(value, name=None, zero_copy=None, dtype=None):
830
    r"""
831 832
    :api_attr: imperative

833
    The API will create a ``Variable`` object from
C
chentianyu03 已提交
834
    tuple, list, numpy\.ndarray or Variable object.
835

836
    Parameters:
837
        value(tuple|list|ndarray|Variable|Tensor): Initial data.
C
chentianyu03 已提交
838
            Can be a list, tuple, NumPy ndarray, Variable, Tensor.
839 840
            The shape can be multi-dimensional. The data type is one of
            numpy\.{float16, float32, float64, int16, int32, int64,
841
            uint8, uint16, complex64, complex128}.
842 843 844 845 846
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
        zero_copy(bool, optional): Whether to share memory with the input numpy
            array. This parameter only works with CPUPlace and will be set to
L
Leo Chen 已提交
847
            True when it is None. Default: None. (Note: zero_copy is discarded temporally for some reason.)
848
        dtype(str, optional): The desired data type of returned ``Variable`` .
849
            Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' ,
850
            'int32' , 'int64' , 'uint8' . Default: None.
851

852
    Returns:
853 854 855
        Variable : If ``value`` is a tuple/list/numpy\.ndarray object,
            return ``Tensor`` created from the corresponding numpy\.ndarray object, which has
            same data type and shape with ``value``.
856

857 858 859 860 861 862

    Examples:

     .. code-block:: python

        import numpy as np
863
        import paddle.base as base
864

865
        with base.dygraph.guard(base.CPUPlace()):
866
            x = np.ones([2, 2], np.float32)
867
            y = base.dygraph.to_variable(x, zero_copy=False)
868 869
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
870
            y = base.dygraph.to_variable(x)
871 872
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
873
            c = np.array([2+1j, 2])
874
            z = base.dygraph.to_variable(c)
875 876
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
877

878
            y = base.dygraph.to_variable([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
879 880
            y.shape     # [3L, 2L]

881
            y = base.dygraph.to_variable(((0.1, 1.2), (2.2, 3.1), (4.9, 5.2)), dtype='int32')
882 883
            y.shape     # [3L, 2L]

884
    """
885 886 887 888 889 890 891 892 893
    support_type = (
        list,
        tuple,
        np.ndarray,
        core.eager.Tensor,
        framework.Variable,
        core.Tensor,
        core.LoDTensor,
    )
894 895
    if not isinstance(value, support_type):
        raise TypeError(
896
            "The type of 'value' in base.dygraph.to_variable must be %s, but received %s."
897 898
            % (support_type, type(value))
        )
W
wanghuancoder 已提交
899
    if isinstance(value, (core.eager.Tensor, framework.Variable)):
900 901
        return value
    elif isinstance(value, (core.Tensor, core.LoDTensor)):
W
wanghuancoder 已提交
902
        return core.eager.Tensor(value)
903
    else:
904 905 906 907
        if isinstance(
            framework._current_expected_place(), framework.core.CPUPlace
        ):
            # TODO(zhiqiu): we found two problems when enable zero_copy on CPUPlace.
908
            # (1): eigen requires 16-bytes alignments, but the data of numpy array may not statisfy.
L
Leo Chen 已提交
909 910 911 912 913 914 915 916 917
            # Details: https://eigen.tuxfamily.org/dox/group__TopicUnalignedArrayAssert.html
            # (2): when used in flask framework, it may result in hang.
            # Details: https://github.com/PaddlePaddle/Paddle/issues/26635
            # So, we temporally diable the zero_copy strategy.
            if zero_copy == True:
                warnings.warn(
                    "Currently, zero_copy is not supported, and it will be discarded."
                )
                zero_copy = False
918
        else:
919 920 921
            assert (
                not zero_copy
            ), "zero_copy mode can only be used with CPUPlace"
922 923 924 925 926 927 928 929 930

        if not isinstance(value, np.ndarray):
            value = np.array(value)

        if dtype is not None:
            dtype = convert_dtype(dtype)
            if value.dtype != dtype:
                value = value.astype(dtype)

W
wanghuancoder 已提交
931 932 933 934 935 936 937 938
        return core.eager.Tensor(
            value,
            framework._current_expected_place(),
            False,
            zero_copy,
            name if name else None,
            True,
        )