layer_norm_op.cc 14.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/layer_norm_op.h"
C
chengduoZH 已提交
16 17
#include "paddle/operators/elementwise_op_function.h"
#include "paddle/operators/math/math_function.h"
C
chengduoZH 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenMatrixMapRowMajor = Eigen::Map<
    Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;
template <typename T>
using ConstEigenMatrixMapRowMajor = Eigen::Map<
    const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
38 39 40 41 42 43 44 45
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"),
                   "Output(Y) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mean"),
                   "Output(Mean) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Variance"),
                   "Output(Variance) of LayerNormOp should not be null.");
C
chengduoZH 已提交
46

C
chengduoZH 已提交
47 48 49
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
    PADDLE_ENFORCE_LT(begin_norm_axis, x_dim.size(),
C
chengduoZH 已提交
50
                      "'begin_norm_axis' must be less than the rank of X.");
C
chengduoZH 已提交
51 52 53

    auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
54
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
55 56 57 58 59 60 61 62
    if (ctx->HasInput("Scale")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], right);
    }
    if (ctx->HasInput("Bias")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], right);
    }
C
chengduoZH 已提交
63

C
chengduoZH 已提交
64
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
65 66
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
67 68 69 70 71 72 73 74
    ctx->ShareLoD("X", "Y");
  }
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LayerNormOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
75
    AddInput("X", "(LoDTensor) The input tensor.");
C
chengduoZH 已提交
76
    AddInput("Scale",
C
chengduoZH 已提交
77 78 79 80
             "(Tensor, optional) Scale is a 1-dimensional tensor of size "
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
C
chengduoZH 已提交
81
    AddInput("Bias",
C
chengduoZH 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94
             "(Tensor, optional) Bias is a 1-dimensional tensor of size "
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
    AddOutput("Y", "(LoDTensor) Result after normalization.");
    AddOutput("Mean", "(Tensor) Mean of the current mini batch.")
        .AsIntermediate();
    AddOutput("Variance", "(Tensor) Variance of the current mini batch.")
        .AsIntermediate();

    AddAttr<float>("epsilon",
                   "(float, default 1e-5) Constant for "
                   "numerical stability")
C
chengduoZH 已提交
95 96 97 98 99
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
C
chengduoZH 已提交
100 101
    AddAttr<int>("begin_norm_axis",
                 "(int default:1), the "
C
chengduoZH 已提交
102 103 104
                 "axis of `begin_norm_axis ... Rank(X) - 1` will be "
                 "normalized. `begin_norm_axis` splits the tensor(`X`) to a "
                 "matrix [N,H].")
C
chengduoZH 已提交
105 106 107 108 109
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
                            "'begin_norm_axis' should be greater than zero.");
        });
C
chengduoZH 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    AddComment(R"DOC(
Layer Normalization.

Layer Norm has been implemented as discussed in the paper:
https://arxiv.org/abs/1607.06450
...
)DOC");
  }
};

template <typename T>
class LayerNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
C
chengduoZH 已提交
131
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
C
chengduoZH 已提交
132 133 134 135 136 137 138 139

    auto *output = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    output->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

C
chengduoZH 已提交
140 141 142
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
143

C
chengduoZH 已提交
144
    auto input_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
C
chengduoZH 已提交
145

C
chengduoZH 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159
    auto mean_map = EigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
    auto var_map = EigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);
    auto output_map = EigenMatrixMapRowMajor<T>(output->data<T>(), left, right);

    auto squre = [](T ele) { return ele * ele; };
    auto add_epslion = [epsilon](T ele) { return ele + epsilon; };

    mean_map = input_map.rowwise().mean();
    var_map = (input_map - mean_map.replicate(1, right))
                  .unaryExpr(squre)
                  .rowwise()
                  .mean()
                  .unaryExpr(add_epslion);

C
chengduoZH 已提交
160
    auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
C
chengduoZH 已提交
161 162
    // TODO(zcd): Some thinking about output_map, is it appropriate that
    // `output_map` and `input_map` point to the same memory.
C
chengduoZH 已提交
163
    auto inv_std = var_map.unaryExpr(inv_std_func);
C
chengduoZH 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    if (scale && bias) {
      auto scale_map =
          ConstEigenMatrixMapRowMajor<T>(scale->data<T>(), 1, right);
      auto bias_map = ConstEigenMatrixMapRowMajor<T>(bias->data<T>(), 1, right);
      output_map = (input_map - mean_map.replicate(1, right))
                       .cwiseProduct(inv_std.replicate(1, right))
                       .cwiseProduct(scale_map.replicate(left, 1)) +
                   bias_map.replicate(left, 1);
    } else if (scale) {
      auto scale_map =
          ConstEigenMatrixMapRowMajor<T>(scale->data<T>(), 1, right);
      output_map = (input_map - mean_map.replicate(1, right))
                       .cwiseProduct(inv_std.replicate(1, right))
                       .cwiseProduct(scale_map.replicate(left, 1));
    } else if (bias) {
      auto bias_map = ConstEigenMatrixMapRowMajor<T>(bias->data<T>(), 1, right);
      output_map = (input_map - mean_map.replicate(1, right))
                       .cwiseProduct(inv_std.replicate(1, right)) +
                   bias_map.replicate(left, 1);
    } else {
      output_map = (input_map - mean_map.replicate(1, right))
                       .cwiseProduct(inv_std.replicate(1, right));
    }
C
chengduoZH 已提交
187 188 189 190 191 192 193 194 195
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
C
chengduoZH 已提交
196 197 198 199 200 201 202 203 204 205
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Scale"),
                   "Input(Scale) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Mean"),
                   "Input(Mean) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Variance"),
                   "Input(Variance) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) of LayerNormOp should not be null.");
C
chengduoZH 已提交
206 207 208

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
209
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
210 211
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
212 213
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
214 215
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
216 217
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    return framework::OpKernelType(framework::ToDataType(t->type()),
                                   ctx.GetPlace());
  }
};

template <typename T>
class LayerNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *var = ctx.Input<Tensor>("Variance");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    const auto &x_dims = x->dims();

C
chengduoZH 已提交
255 256
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
C
chengduoZH 已提交
257 258
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto x_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
    auto d_y_map = ConstEigenMatrixMapRowMajor<T>(d_y->data<T>(), left, right);
    auto mean_map = ConstEigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
    auto var_map = ConstEigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
272
      auto d_bias_map = EigenMatrixMapRowMajor<T>(d_bias->data<T>(), 1, right);
C
chengduoZH 已提交
273
      d_bias_map = d_y_map.colwise().sum();
C
chengduoZH 已提交
274 275 276
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
277 278
      auto d_scale_map =
          EigenMatrixMapRowMajor<T>(d_scale->data<T>(), 1, right);
C
chengduoZH 已提交
279
      auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
C
chengduoZH 已提交
280 281
      // There are two equation to compute d_scale. One uses "Y" and the other
      // does not use "Y"
C
chengduoZH 已提交
282
      d_scale_map =
C
chengduoZH 已提交
283
          ((x_map - mean_map.replicate(1, right))
C
chengduoZH 已提交
284 285
               .cwiseProduct(
                   var_map.unaryExpr(inv_std_func).replicate(1, right))
C
chengduoZH 已提交
286
               .cwiseProduct(d_y_map))
C
chengduoZH 已提交
287
              .colwise()
C
chengduoZH 已提交
288
              .sum();
C
chengduoZH 已提交
289 290 291 292 293
    }

    if (d_x) {
      d_x->mutable_data<T>(ctx.GetPlace());
      auto d_x_map = EigenMatrixMapRowMajor<T>(d_x->data<T>(), left, right);
C
chengduoZH 已提交
294 295
      auto triple_product_func = [](T ele) { return ele * ele * ele; };
      auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
C
chengduoZH 已提交
296 297

      auto inv_std_map = var_map.unaryExpr(inv_std_func).eval();
C
chengduoZH 已提交
298 299 300 301 302
      // TODO(zcd): these code can be refined
      if (d_scale) {
        auto scale_map =
            ConstEigenMatrixMapRowMajor<T>(scale->data<T>(), 1, right);
        // dy_dx
C
chengduoZH 已提交
303 304 305 306
        auto dx_end =
            inv_std_map.replicate(1, right).cwiseProduct(d_y_map).cwiseProduct(
                scale_map.replicate(left, 1));

C
chengduoZH 已提交
307
        // dy_dmean_dx
C
chengduoZH 已提交
308 309 310
        auto dx_mean =
            (T(-1.0) / right) * dx_end.rowwise().sum().replicate(1, right);

C
chengduoZH 已提交
311 312 313 314 315 316
        // dy_var_dx
        auto dvar_end_part = (x_map - mean_map.replicate(1, right))
                                 .cwiseProduct(scale_map.replicate(left, 1))
                                 .cwiseProduct(d_y_map)
                                 .rowwise()
                                 .sum();
C
chengduoZH 已提交
317
        auto dvar_end = inv_std_map.unaryExpr(triple_product_func)
C
chengduoZH 已提交
318 319 320 321 322 323 324 325 326
                            .cwiseProduct(dvar_end_part)
                            .replicate(1, right);
        auto dx_var =
            (T(-1.0) / right) *
            (x_map - mean_map.replicate(1, right)).cwiseProduct(dvar_end);

        d_x_map = dx_end + dx_mean + dx_var;
      } else {
        // dy_dx
C
chengduoZH 已提交
327 328
        auto dx_end = inv_std_map.replicate(1, right).cwiseProduct(d_y_map);

C
chengduoZH 已提交
329
        // dy_dmean_dx
C
chengduoZH 已提交
330 331 332
        auto dx_mean =
            (T(-1.0) / right) * dx_end.rowwise().sum().replicate(1, right);

C
chengduoZH 已提交
333 334 335 336 337
        // dy_var_dx
        auto dvar_end_part = (x_map - mean_map.replicate(1, right))
                                 .cwiseProduct(d_y_map)
                                 .rowwise()
                                 .sum();
C
chengduoZH 已提交
338
        auto dvar_end = inv_std_map.unaryExpr(triple_product_func)
C
chengduoZH 已提交
339 340 341 342 343 344 345 346
                            .cwiseProduct(dvar_end_part)
                            .replicate(1, right);
        auto dx_var =
            (T(-1.0) / right) *
            (x_map - mean_map.replicate(1, right)).cwiseProduct(dvar_end);

        d_x_map = dx_end + dx_mean + dx_var;
      }
C
chengduoZH 已提交
347 348 349 350 351 352 353 354 355 356 357
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
            layer_norm_grad, ops::LayerNormGradOp);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
358 359
    layer_norm, ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
360 361
REGISTER_OP_CPU_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
362 363
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, double>);