custom_tanh_op.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cmath>
#include <iostream>
#include <vector>

#include "paddle/extension.h"

#define CHECK_CPU_INPUT(x) \
  PD_CHECK(x.place() == paddle::PlaceType::kCPU, #x " must be a CPU Tensor.")

template <typename data_t>
void tanh_cpu_forward_kernel(const data_t* x_data,
                             data_t* out_data,
                             int64_t x_numel) {
  PD_CHECK(x_data != nullptr, "x_data is nullptr.");
  PD_CHECK(out_data != nullptr, "out_data is nullptr.");
  for (int64_t i = 0; i < x_numel; ++i) {
    out_data[i] = std::tanh(x_data[i]);
  }
}

template <typename data_t>
void tanh_cpu_backward_kernel(const data_t* grad_out_data,
                              const data_t* out_data,
                              data_t* grad_x_data,
                              int64_t out_numel) {
  PD_CHECK(grad_out_data != nullptr, "grad_out_data is nullptr.");
  PD_CHECK(out_data != nullptr, "out_data is nullptr.");
  PD_CHECK(grad_x_data != nullptr, "grad_x_data is nullptr.");
  for (int64_t i = 0; i < out_numel; ++i) {
    grad_x_data[i] =
        grad_out_data[i] * (static_cast<data_t>(1) - out_data[i] * out_data[i]);
  }
}

template <typename data_t>
void tanh_cpu_double_backward_kernel(const data_t* out_data,
                                     const data_t* ddx_data,
                                     const data_t* dout_data,
                                     data_t* dout_new_data,
                                     data_t* ddout_data,
                                     int64_t ddout_numel) {
  PD_CHECK(out_data != nullptr, "out_data is nullptr.");
  PD_CHECK(ddx_data != nullptr, "ddx_data is nullptr.");
  PD_CHECK(dout_data != nullptr, "dout_data is nullptr.");
  PD_CHECK(dout_new_data != nullptr, "dout_new_data is nullptr.");
  PD_CHECK(ddout_data != nullptr, "ddout_data is nullptr.");
  for (int64_t i = 0; i < ddout_numel; ++i) {
    dout_new_data[i] = static_cast<data_t>(-1) * dout_data[i] *
                       static_cast<data_t>(2) * out_data[i] * ddx_data[i];
    ddout_data[i] =
        ddx_data[i] * (static_cast<data_t>(1) - out_data[i] * out_data[i]);
  }
}

std::vector<paddle::Tensor> TanhForward(const paddle::Tensor& x) {
  CHECK_CPU_INPUT(x);
  auto out = paddle::Tensor(paddle::PlaceType::kCPU, x.shape());

  PD_DISPATCH_FLOATING_TYPES(
      x.dtype(), "tanh_cpu_forward", ([&] {
        tanh_cpu_forward_kernel<data_t>(
            x.data<data_t>(), out.mutable_data<data_t>(x.place()), x.size());
      }));

  return {out};
}

std::vector<paddle::Tensor> TanhBackward(const paddle::Tensor& out,
                                         const paddle::Tensor& grad_out) {
  CHECK_CPU_INPUT(out);
  auto grad_x = paddle::Tensor(paddle::PlaceType::kCPU, out.shape());

  PD_DISPATCH_FLOATING_TYPES(out.dtype(), "tanh_cpu_backward", ([&] {
                               tanh_cpu_backward_kernel<data_t>(
                                   grad_out.data<data_t>(),
                                   out.data<data_t>(),
                                   grad_x.mutable_data<data_t>(out.place()),
                                   out.size());
                             }));

  return {grad_x};
}

std::vector<paddle::Tensor> TanhDoubleBackward(const paddle::Tensor& out,
                                               const paddle::Tensor& ddx,
                                               const paddle::Tensor& dout) {
  CHECK_CPU_INPUT(out);
  CHECK_CPU_INPUT(ddx);
  CHECK_CPU_INPUT(dout);
  auto dout_new = paddle::Tensor(paddle::PlaceType::kCPU, out.shape());
  auto ddout = paddle::Tensor(paddle::PlaceType::kCPU, out.shape());

  PD_DISPATCH_FLOATING_TYPES(out.dtype(), "tanh_cpu_double_backward", ([&] {
                               tanh_cpu_double_backward_kernel<data_t>(
                                   out.data<data_t>(),
                                   ddx.data<data_t>(),
                                   dout.data<data_t>(),
                                   dout_new.mutable_data<data_t>(out.place()),
                                   ddout.mutable_data<data_t>(out.place()),
                                   ddout.size());
                             }));

  return {dout_new, ddout};
}

std::vector<std::vector<int64_t>> TanhBackwardInferShape(
    const std::vector<int64_t>& out_shape,
    const std::vector<int64_t>& dout_shape) {
  return {out_shape};
}

std::vector<std::vector<int64_t>> TanhDoubleBackwardInferShape(
    const std::vector<int64_t>& out_shape,
    const std::vector<int64_t>& ddx_shape,
    const std::vector<int64_t>& dout_shape) {
  return {dout_shape, dout_shape};
}

PD_BUILD_OP(custom_tanh)
    .Inputs({"X"})
    .Outputs({"Out"})
    .SetKernelFn(PD_KERNEL(TanhForward));

PD_BUILD_GRAD_OP(custom_tanh)
    .Inputs({"Out", paddle::Grad("Out")})
    .Outputs({paddle::Grad("X")})
    .SetKernelFn(PD_KERNEL(TanhBackward))
    .SetInferShapeFn(PD_INFER_SHAPE(TanhBackwardInferShape));

PD_BUILD_DOUBLE_GRAD_OP(custom_tanh)
    .Inputs({"Out", paddle::Grad(paddle::Grad("X")), paddle::Grad("Out")})
    .Outputs({paddle::New(paddle::Grad("Out")),
              paddle::Grad(paddle::Grad("Out"))})
    .SetKernelFn(PD_KERNEL(TanhDoubleBackward))
    .SetInferShapeFn(PD_INFER_SHAPE(TanhDoubleBackwardInferShape));