test_lstmp_op.py 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import numpy as np
from op_test import OpTest

SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0


def identity(x):
    return x


def sigmoid(x):
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
    return 1. / (1. + np.exp(-y))


def tanh(x):
    y = -2. * x
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
    return (2. / (1. + np.exp(y))) - 1.


def relu(x):
    return np.maximum(x, 0)


44
ACTIVATION = {
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    'identity': identity,
    'sigmoid': sigmoid,
    'tanh': tanh,
    'relu': relu
}


# LSTM with recurrent projection Layer
def lstmp(
        input,  # T x 4D
        lod,  # 1 x N
        h0=None,  # N x D
        c0=None,  # N x D
        w_r=None,  # P x 5D
        w_rh=None,  # D x P
        w_b=None,  # 1 x 4D
        w_c=None,  # 1 x 3D
        is_reverse=False,
        act_gate=None,
        act_cell=None,
65
        act_cand=None,
66 67 68
        act_proj=None):
    def _step(x, w_r, w_rh, w_c, r_pre, c_pre, act_gate, act_cell, act_cand,
              act_proj):
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        g = np.dot(r_pre, w_r)  # 1 x 4D
        g = g + x
        g = np.reshape(g, (1, g.size))
        c, g_i, g_f, g_o = np.split(g, 4, axis=1)
        if w_c is None:
            g_i = act_gate(g_i)  # 1 x D
            g_f = act_gate(g_f)  # 1 x D
        else:
            w_ic, w_fc, _ = np.split(w_c, 3, axis=1)
            g_i = act_gate(g_i + w_ic * c_pre)  # 1 x D
            g_f = act_gate(g_f + w_fc * c_pre)  # 1 x D
        c = g_f * c_pre + g_i * act_cand(c)  # 1 x D

        if w_c is None:
            g_o = act_gate(g_o)  # 1 x D
        else:
            _, _, w_oc = np.split(w_c, 3, axis=1)
            g_o = act_gate(g_o + w_oc * c)  # 1 x D
        h = g_o * act_cell(c)
        # projection
        r = np.dot(h, w_rh)
90
        r = act_proj(r)
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        return r, c

    def _reverse(x, lod):
        y = np.zeros_like(x)
        for i in range(len(lod) - 1):
            b, e = lod[i], lod[i + 1]
            y[b:e, :] = np.flip(x[b:e, :], 0)
        return y

    offset = lod[0]
    batch_size = len(offset) - 1
    # recurrent projection state
    projection = []
    cell = []
    input = _reverse(input, offset) if is_reverse else input
    if w_b is not None:
        input = input + np.tile(w_b, (offset[-1], 1))
    for i in range(batch_size):
        # compute one sequence
        seq_len = offset[i + 1] - offset[i]
        x = input[offset[i]:offset[i + 1], :]
        r_pre = np.dot(h0[i], w_rh)  # 1 x P
113
        r_pre = act_proj(r_pre)
114 115 116 117
        c_pre = c0[i]  # 1 x D
        for j in range(seq_len):
            # compute one step
            r_pre, c_pre = _step(x[j], w_r, w_rh, w_c, r_pre, c_pre, act_gate,
118
                                 act_cell, act_cand, act_proj)
119 120 121 122 123 124 125 126 127 128 129 130 131 132
            projection.append(r_pre.flatten())
            cell.append(c_pre.flatten())

    projection = np.array(projection).astype('float64')
    cell = np.array(cell).astype('float64')

    projection = _reverse(projection, offset) if is_reverse else projection
    cell = _reverse(cell, offset) if is_reverse else cell

    assert projection.shape == (input.shape[0], w_r.shape[0])  # T x P
    assert cell.shape == (input.shape[0], input.shape[1] / 4)  # T x D
    return projection, cell


133
class TestLstmpOp(OpTest):
134 135 136 137 138 139 140 141 142 143
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        # hidden size
        self.D = 16
        # projection size
        self.P = 10

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
144
        self.act_proj = self.act_cell
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        self.has_initial_state = False
        self.is_reverse = False
        self.use_peepholes = True

    def setUp(self):
        self.set_argument()
        self.op_type = 'lstmp'

        T = self.lod[0][-1]
        N = len(self.lod[0]) - 1

        x = np.random.normal(size=(T, 4 * self.D)).astype('float64')
        if self.has_initial_state:
            h0 = np.random.normal(size=(N, self.D)).astype('float64')
            c0 = np.random.normal(size=(N, self.D)).astype('float64')
        else:
            h0 = np.zeros((N, self.D)).astype('float64')
            c0 = np.zeros((N, self.D)).astype('float64')
        w = np.random.normal(size=(self.P, 4 * self.D)).astype('float64')
        if self.use_peepholes:
            b = np.random.normal(size=(1, 7 * self.D)).astype('float64')
        else:
            b = np.random.normal(size=(1, 4 * self.D)).astype('float64')

        w_b = b[:, 0:4 * self.D]
        w_c = b[:, 4 * self.D:] if self.use_peepholes else None
        w_rh = np.random.normal(size=(self.D, self.P)).astype('float64')
        r, c = lstmp(x, self.lod, h0, c0, w, w_rh, w_b, w_c, self.is_reverse,
174 175
                     ACTIVATION[self.act_gate], ACTIVATION[self.act_cell],
                     ACTIVATION[self.act_cand], ACTIVATION[self.act_proj])
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

        self.inputs = {'Input': (x, self.lod), 'Weight': w, 'ProjWeight': w_rh}

        self.inputs['Bias'] = b

        if self.has_initial_state:
            self.inputs['H0'] = h0
            self.inputs['C0'] = c0

        self.outputs = {
            'Projection': (r, self.lod),
            'Cell': (c, self.lod),
        }
        self.attrs = {
            'use_peepholes': self.use_peepholes,
            'is_reverse': self.is_reverse,
            'gate_activation': self.act_gate,
            'cell_activation': self.act_cell,
Y
Yibing Liu 已提交
194
            'candidate_activation': self.act_cand,
195
            'proj_activation': self.act_proj
196 197 198 199 200 201 202 203
        }

    def test_check_output(self):
        self.check_output(atol=1e-8)

    def test_check_grad(self):
        # TODO(qingqing) remove folowing lines after the check_grad is refined.
        N = len(self.lod[0]) - 1
204
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
205
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
206
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
207 208 209
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
210 211
            ['Input', 'Weight', 'ProjWeight', 'Bias'], ['Projection'],
            max_relative_error=1e-2)
212 213


214
class TestLstmpOpHasInitial(TestLstmpOp):
215 216 217
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        self.D = 16
218
        self.P = 5
219 220 221 222

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
223
        self.act_proj = self.act_cell
224 225 226 227 228 229 230 231

        self.has_initial_state = True
        self.is_reverse = True
        self.use_peepholes = True

    def test_check_grad(self):
        # TODO(qingqing) remove folowing lines after the check_grad is refined.
        N = len(self.lod[0]) - 1
232
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
233
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
234
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
235 236 237
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
238 239 240
            ['Input', 'Weight', 'ProjWeight', 'Bias', 'H0', 'C0'],
            ['Projection'],
            max_relative_error=1e-2)
241 242 243

    def test_check_grad_ingore_bias(self):
        N = len(self.lod[0]) - 1
244
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
245
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
246
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
247 248 249
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
250 251
            ['Input', 'ProjWeight', 'Weight'], ['Projection'],
            max_relative_error=1e-2,
252 253 254 255
            no_grad_set=set('Bias'))

    def test_check_grad_ingore_weight(self):
        N = len(self.lod[0]) - 1
256
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
257
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
258
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
259 260 261
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
262 263
            ['Input', 'ProjWeight', 'Bias'], ['Projection'],
            max_relative_error=1e-2,
264 265
            no_grad_set=set('Weight'))

266 267 268 269 270 271 272 273 274 275 276 277
    def test_check_grad_ingore_proj_weight(self):
        N = len(self.lod[0]) - 1
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
            ['Input', 'Weight', 'Bias'], ['Projection'],
            max_relative_error=1e-2,
            no_grad_set=set('ProjWeight'))

278 279
    def test_check_grad_ingore_input(self):
        N = len(self.lod[0]) - 1
280
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
281
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
282
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
283 284 285
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
286 287
            ['Weight', 'ProjWeight', 'Bias'], ['Projection'],
            max_relative_error=1e-2,
288 289 290 291
            no_grad_set=set('Input'))

    def test_check_grad_ingore_h0(self):
        N = len(self.lod[0]) - 1
292
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
293
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
294
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
295 296 297
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
298 299
            ['Input', 'Weight', 'ProjWeight', 'Bias', 'C0'], ['Projection'],
            max_relative_error=1e-2,
300 301 302 303
            no_grad_set=set('H0'))

    def test_check_grad_ingore_c0(self):
        N = len(self.lod[0]) - 1
304
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
305
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
306
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
307 308 309
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
310 311
            ['Input', 'Weight', 'ProjWeight', 'Bias', 'H0'], ['Projection'],
            max_relative_error=1e-2,
312 313 314
            no_grad_set=set('C0'))


315
class TestLstmpOpRerverse(TestLstmpOp):
316 317 318 319 320 321 322 323
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        self.D = 16
        self.P = 10

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
324
        self.act_proj = self.act_cell
325 326 327 328 329 330

        self.has_initial_state = False
        self.is_reverse = True
        self.use_peepholes = True


331
class TestLstmpOpNotUsePeepholes(TestLstmpOp):
332 333 334 335 336 337 338 339
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        self.D = 16
        self.P = 10

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
340
        self.act_proj = self.act_cell
341 342

        self.has_initial_state = False
Y
Yibing Liu 已提交
343
        self.is_reverse = False
344 345 346
        self.use_peepholes = False


347
class TestLstmpOpLinearProjection(TestLstmpOp):
Y
Yibing Liu 已提交
348 349 350 351 352 353 354 355
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        self.D = 16
        self.P = 10

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
356
        self.act_proj = 'identity'
Y
Yibing Liu 已提交
357 358 359 360 361 362

        self.has_initial_state = False
        self.is_reverse = False
        self.use_peepholes = True


363 364
if __name__ == '__main__':
    unittest.main()