auto_mixed_precision_pass.cc 27.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/auto_mixed_precision_pass.h"

#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"

namespace paddle {
namespace framework {
namespace ir {

namespace {

using VarType = AutoMixedPrecisionPass::VarType;

bool PhiKernelSupportPrecision(
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  const auto& kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.count(op_type) == 0) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

bool GpuKernelSupportPrecision(
    const std::string& op_type,
    phi::DataType precision,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool support = PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPU, precision, layout);
  support |= PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPUDNN, precision, layout);

  if (!support) {
    const auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (const auto& kern_pair : it->second) {
        if (platform::is_gpu_place(kern_pair.first.place_) &&
            kern_pair.first.data_type_ ==
                framework::TransToProtoVarType(precision)) {
          support = true;
          break;
        }
      }
    }
  }
  return support;
}

inline bool VarNodeHasDtype(Node* var_node) {
  auto type = var_node->Var()->GetType();
  return (type == VarType::SELECTED_ROWS) || (type == VarType::LOD_TENSOR) ||
         (type == VarType::LOD_TENSOR_ARRAY) || (type == VarType::STRINGS) ||
         (type == VarType::VOCAB);
}

inline bool IsFloatType(VarType::Type type) {
  return (type == VarType::FP64) || (type == VarType::FP32);
}

inline bool IsHalfType(VarType::Type type) {
  return (type == VarType::FP16) || (type == VarType::BF16);
}

};  // namespace

void DoInsertCastOp(Graph* graph,
                    Node* var_node,
                    Node* op_node,
                    VarType::Type from_type,
                    VarType::Type to_type,
                    framework::BlockDesc* block_desc,
                    int* suffix,
                    std::unordered_map<Node*, Node*>* cache) {
  if (from_type == to_type) return;

  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (cache->count(var_node) == 0) {
    // insert cast op between var_node and op_node
    std::string cast_input_name = var_node->Var()->Name();
    std::string cast_output_name =
        var_node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(var_node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*cache)[var_node] = cast_output_node;
  }
  op_node->Op()->Rename(var_node->Name(), cache->at(var_node)->Name());
  IR_NODE_LINK_TO(var_node, cache->at(var_node)->inputs[0]);
  IR_NODE_LINK_TO(cache->at(var_node), op_node);

  IR_NODE_UNLINK(var_node, op_node);
}

bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& black_list) {
  bool support = false;
  if (black_list.count(op_type) == 0) {
    if (backend == phi::Backend::GPU) {
      support = GpuKernelSupportPrecision(op_type, precision);
    } else {
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Now, only support backend of GPU."));
    }
  }
  return support;
}

// The set of ops that support fp16 calculation and are considered
// numerically-dangerous, slower and whose effects may also be observed in
// downstream ops.
void AutoMixedPrecisionPass::SetDefaultBlacklist() const {
  black_list_.insert({
      // numerically-dangerous
      "acos",
      "asin",
      "cosh",
      "tan",
      "exp",
      "expm1",
      "square",
      "log",
      "log2",
      "log10",
      "log1p",
      "logsumexp",
      "mean",
      "rsqrt",
      "sum",
      "cos_sim",
      "softmax",
      "softmax_with_cross_entropy",
      "sigmoid_cross_entropy_with_logits",
      "c_softmax_with_cross_entropy",
      "cross_entropy",
      "cross_entropy2",
      // slower than fp32
      "conv2d_transpose",
      // default fp32 can avoid return inf when the sum value large than 65504
      "reduce_sum",
  });
}

void AutoMixedPrecisionPass::Init(Graph* graph) const {
  bool enable_gpu_mixed = Get<bool>("enable_gpu_mixed");
  if (enable_gpu_mixed) {
    backend_ = phi::Backend::GPU;
  }

  skip_pass_ = !enable_gpu_mixed;

  low_precision_ = static_cast<phi::DataType>(Get<int>("mixed_precision_mode"));

  black_list_ = Get<std::unordered_set<std::string>>("mixed_black_list");
  SetDefaultBlacklist();
  VLOG(4) << "black_list has ";
  for (const auto& name : black_list_) {
    VLOG(4) << " - " << name;
  }

  keep_io_types_ = true;
  if (Has("keep_io_types")) {
    keep_io_types_ = Get<bool>("keep_io_types");
  }

  auto graph_size = graph->SubGraphsSize();
  VLOG(4) << "graph size: " << graph_size;
  subgraphes_.resize(graph_size);
  all_op_nodes_.resize(graph_size);

  for (size_t i = 0; i < graph_size; i++) {
    subgraphes_[i] = graph->GetSubGraph(i);
    all_op_nodes_[i] = TopologySortOperations(*subgraphes_[i]);
    VLOG(4) << "subgraph " << i << " has " << all_op_nodes_[i].size()
            << "op nodes";
    for (auto* var_node : subgraphes_[i]->Nodes()) {
      if (!var_node->IsVar()) continue;

      auto var_name = var_node->Var()->Name();
      if (real_vars_.count(var_name) == 0) {
        real_vars_[var_name] = var_node;
        VLOG(4) << var_name << " is in graph " << i;
      }
    }
  }
}

void AutoMixedPrecisionPass::ApplyImpl(Graph* graph) const {
  PADDLE_ENFORCE_NOT_NULL(graph,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the graph "
                              "should not be nullptr."));
  PADDLE_ENFORCE_EQ(graph->IsMainGraph(),
                    true,
                    platform::errors::PreconditionNotMet(
                        "During the auto_mixed_precision_pass, the graph "
                        "should be main graph."));

  FusePassBase::Init("auto_mixed_precision", graph);

  Init(graph);
  VLOG(4) << "Init done";

  if (skip_pass_) {
    VLOG(3) << "Skip auto_mixed_precision_pass.";
    return;
  }

  SetOpUniqueType();
  VLOG(4) << "SetOpUniqueType done";
  GetOpPrecision();
  VLOG(4) << "GetOpPrecision done";
  UpdateOpPrecision();
  VLOG(4) << "UpdateOpPrecision done";
  SetVarPrecision();
  VLOG(4) << "SetVarPrecision done";
  ConvertWeightsData();
  VLOG(4) << "ConvertWeightsData done";
  ProcessOpWithDtypeAttr();
  VLOG(4) << "ProcessOpWithDtypeAttr done";
  InsertCastOp();
  VLOG(4) << "InsertCastOp done";
  RestoreOpOriginType();
  VLOG(4) << "RestoreOpOriginType done";
}

void AutoMixedPrecisionPass::SetOpUniqueType() const {
  int suffix = 0;
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();

      if (op_type == "feed" || op_type == "fetch") continue;

      std::string unique_type = op_type + "_" + std::to_string(suffix++);
      op_original_type_[unique_type] = op_type;
      op_node->Op()->SetType(unique_type);
      op_node->Op()->Flush();
      VLOG(4) << "change op type: " << op_type << " ---> " << unique_type;
    }
  }
}

void AutoMixedPrecisionPass::RestoreOpOriginType() const {
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
      op_node->Op()->SetType(GetOpOriginalType(op_type));
      op_node->Op()->Flush();
      VLOG(4) << "restore op type: " << op_type << " ---> "
              << op_node->Op()->Type();
    }
  }
}

inline std::string AutoMixedPrecisionPass::GetOpOriginalType(
    const std::string& op_type) const {
  if (op_original_type_.count(op_type)) {
    return op_original_type_.at(op_type);
  }
  return op_type;
}

void AutoMixedPrecisionPass::ProcessOpWithDtypeAttr() const {
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
      if (op_run_low_precision_.count(op_type) == 0) continue;

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
        if (IsFloatType(static_cast<VarType::Type>(dtype))) {
          op_node->Op()->SetAttr(
              "dtype",
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
          op_node->Op()->Flush();
          VLOG(4) << "process op with dtype attr: " << op_type << " ( " << dtype
                  << " --->" << static_cast<int>(low_precision_) << " )";
        }
      }
      if (op_node->Op()->HasAttr("out_dtype")) {
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
        if (IsFloatType(static_cast<VarType::Type>(out_dtype))) {
          op_node->Op()->SetAttr(
              "out_dtype",
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
          op_node->Op()->Flush();
          VLOG(4) << "process op with out_dtype attr: " << op_type << " ( "
                  << out_dtype << " --->" << static_cast<int>(low_precision_)
                  << " )";
        }
      }
    }
  }
}

void AutoMixedPrecisionPass::GetOpPrecision() const {
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
      bool support_low_precision = true;
      if (GetOpOriginalType(op_type) == "feed" ||
          GetOpOriginalType(op_type) == "fetch") {
        support_low_precision = !keep_io_types_;
      } else {
        support_low_precision = OpSupportPrecision(
            GetOpOriginalType(op_type), backend_, low_precision_, black_list_);
      }

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
        support_low_precision = support_low_precision &&
                                IsFloatType(static_cast<VarType::Type>(dtype));
      } else if (op_node->Op()->HasAttr("out_dtype")) {
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
        support_low_precision =
            support_low_precision &&
            IsFloatType(static_cast<VarType::Type>(out_dtype));
      } else {
        // if op's input var and output var is not dense tensor, the op should
        // not run at low precision.
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;

          support_low_precision =
              support_low_precision &&
              (real_in_var_node->Var()->GetType() == VarType::LOD_TENSOR);
        }

        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

          support_low_precision =
              support_low_precision &&
              (real_out_var_node->Var()->GetType() == VarType::LOD_TENSOR);
        }
      }

      if (support_low_precision) {
        op_run_low_precision_.insert(op_type);
        VLOG(4) << "support precision: " << op_type << " run at low precision";
      } else {
        VLOG(4) << "support precision: " << op_type
                << " not run at low precision";
      }
    }
  }
}

void AutoMixedPrecisionPass::UpdateOpPrecision() const {
  std::unordered_set<std::string> vars_should_not_low_precision;

  // var -> the var's all input op
  std::unordered_map<std::string, std::vector<Node*>> var_input_ops;

  auto GetVarInputOps = [&] {
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
        auto op_type = op_node->Op()->Type();

        if (GetOpOriginalType(op_type) == "fetch") continue;
        if (op_node->Op()->HasAttr("sub_block")) continue;

        for (auto* var_node : op_node->outputs) {
          CHECK_EQ(var_node->IsVar(), true);
          if (var_node->Var()->Persistable()) continue;
          if (!VarNodeHasDtype(var_node)) continue;

          var_input_ops[var_node->Var()->Name()].push_back(op_node);
          VLOG(4) << "var input ops: " << var_node->Var()->Name()
                  << " is output of " << op_type;
        }

        // the select_input op's input var should not convert to low precision.
        // when op's output var is select_input op's input var, the op should
        // not run at low precision.
        if (GetOpOriginalType(op_node->Op()->Type()) == "select_input") {
          for (auto* in_var_node : op_node->inputs) {
            CHECK_EQ(in_var_node->IsVar(), true);
            if (in_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(in_var_node)) continue;

            vars_should_not_low_precision.insert(in_var_node->Var()->Name());
          }
        }
Y
Yuanle Liu 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453

        // when op_1 only support cpu kernel. if op_2's intput var is op_1's
        // output var, then op_2 should not run half.
        if (GetOpOriginalType(op_type) != "feed" &&
            !GpuKernelSupportPrecision(GetOpOriginalType(op_type),
                                       phi::DataType::FLOAT32)) {
          for (auto* out_var_node : op_node->outputs) {
            CHECK_EQ(out_var_node->IsVar(), true);
            if (out_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(out_var_node)) continue;

            vars_should_not_low_precision.insert(out_var_node->Var()->Name());
          }
        }
454 455 456 457 458 459 460 461 462 463 464 465
      }
    }
  };
  GetVarInputOps();

  bool precision_updated = false;
  do {
    precision_updated = false;
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;

Y
Yuanle Liu 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          if (!VarNodeHasDtype(in_var_node)) continue;

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;

          if (vars_should_not_low_precision.count(
                  real_in_var_node->Var()->Name())) {
            op_run_low_precision_.erase(op_node->Op()->Type());
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
                    << " should not run at low precision.";
            break;
          }
        }

        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          if (!VarNodeHasDtype(out_var_node)) continue;

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

          bool not_run_low_precision = false;
          const auto& input_op_nodes =
              var_input_ops[real_out_var_node->Var()->Name()];
          if (vars_should_not_low_precision.count(
                  real_out_var_node->Var()->Name())) {
            not_run_low_precision = true;
          } else {
            for (auto* node : input_op_nodes) {
              if (op_run_low_precision_.count(node->Op()->Type()) == 0) {
                not_run_low_precision = true;
                break;
              }
            }
          }
          if (not_run_low_precision) {
            op_run_low_precision_.erase(op_node->Op()->Type());
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
                    << " should not run at low precision.";
            break;
          }
        }
      }
    }
  } while (precision_updated);
}

// special ops, its weights should not be low precision.
bool AutoMixedPrecisionPass::InputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
  auto* op_desc = op_node->Op();
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Input("Bias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Mean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Scale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Variance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  } else if (GetOpOriginalType(op_desc->Type()) == "fused_multi_transformer") {
    auto vecs = op_desc->Input("LnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("LnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
  return false;
}

bool AutoMixedPrecisionPass::OutputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
  auto* op_desc = op_node->Op();
  // batch_norm's input and output (variance and mean) are the same.
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
  return false;
}

void AutoMixedPrecisionPass::SetVarPrecision() const {
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) {
        continue;
      }

      if (GetOpOriginalType(op_node->Op()->Type()) != "feed") {
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          auto in_var_name = real_in_var_node->Var()->Name();

          if (!IsFloatType(real_in_var_node->Var()->GetDataType())) continue;
          if (!VarNodeHasDtype(real_in_var_node)) continue;
          if (InputVarsNotConvert(op_node, in_var_name)) continue;

          if (real_in_var_node->Var()->Persistable()) {
            real_in_var_node->Var()->SetDataType(
                framework::TransToProtoVarType(low_precision_));
            vars_convert_to_low_precision_.insert(in_var_name);
          }
        }
      }

      if (GetOpOriginalType(op_node->Op()->Type()) != "fetch") {
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          auto out_var_name = real_out_var_node->Var()->Name();

          if (!IsFloatType(real_out_var_node->Var()->GetDataType())) continue;
          if (!VarNodeHasDtype(real_out_var_node)) continue;
          if (OutputVarsNotConvert(op_node, out_var_name)) continue;

          real_out_var_node->Var()->SetDataType(
              framework::TransToProtoVarType(low_precision_));
          if (real_out_var_node->Var()->Persistable()) {
            vars_convert_to_low_precision_.insert(out_var_name);
          }
        }
      }
    }
  }

  // This code used to precess vars with the same name. Vars with the same
  // name should have the same data type.
  for (auto* subgraph : subgraphes_) {
    for (auto* var_node : subgraph->Nodes()) {
      if (!var_node->IsVar() || !var_node->Var()->Persistable()) continue;
      if (!VarNodeHasDtype(var_node)) continue;

      auto var_name = var_node->Var()->Name();
      if (vars_convert_to_low_precision_.count(var_name)) {
        var_node->Var()->SetDataType(
            framework::TransToProtoVarType(low_precision_));
      }
    }
  }
}

void AutoMixedPrecisionPass::ConvertWeightsData() const {
  auto* scope = param_scope();
  PADDLE_ENFORCE_NOT_NULL(scope,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the scope "
                              "should not be null."));

  auto var_names = scope->LocalVarNames();
  for (const auto& var_name : var_names) {
    if (vars_convert_to_low_precision_.count(var_name)) {
      VLOG(4) << var_name << "'s data type was convert to half";

      auto* var = scope->FindLocalVar(var_name);
      CHECK_EQ(var->IsType<phi::DenseTensor>(), true);

      auto* origin_tensor = var->GetMutable<phi::DenseTensor>();

      phi::DenseTensor low_precision_tensor;
      low_precision_tensor.Resize(origin_tensor->dims());
      low_precision_tensor.set_type(low_precision_);

      if (low_precision_ == phi::DataType::FLOAT16) {
        auto* low_precision_data =
            low_precision_tensor.mutable_data<phi::dtype::float16>(
                phi::CPUPlace{});
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
          }
        }
      } else if (low_precision_ == phi::DataType::BFLOAT16) {
        auto* half_data =
            low_precision_tensor.mutable_data<phi::dtype::bfloat16>(
                phi::CPUPlace{});
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
            half_data[i] = static_cast<phi::dtype::bfloat16>(origin_data[i]);
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
            half_data[i] = static_cast<phi::dtype::bfloat16>(origin_data[i]);
          }
        }
      }
      origin_tensor->clear();
      paddle::framework::TensorCopySync(
          low_precision_tensor, phi::CPUPlace{}, origin_tensor);
    }
  }
}

void AutoMixedPrecisionPass::InsertCastOp() const {
  int suffix = 0;
  std::unordered_map<Node*, Node*> cache;

  for (size_t i = 0; i < all_op_nodes_.size(); i++) {
    auto* block_desc = all_op_nodes_[i][0]->Op()->Block();
    CHECK_NOTNULL(block_desc);
    for (auto* op_node : all_op_nodes_[i]) {
      auto op_type = op_node->Op()->Type();

      if (GetOpOriginalType(op_type) == "feed") continue;
      if (op_node->Op()->HasAttr("sub_block")) continue;

      VLOG(4) << "process op: " << op_type
              << " run low precision: " << op_run_low_precision_.count(op_type);

      auto inputs = op_node->inputs;
      for (auto* in_var_node : inputs) {
        if (!in_var_node->IsVar()) continue;
        if (!VarNodeHasDtype(in_var_node)) continue;
        if (in_var_node->Var()->Persistable()) continue;

        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];

        auto in_var_type = real_in_var_node->Var()->GetDataType();

        VLOG(4) << "process var: " << real_in_var_node->Var()->Name()
                << " with type " << in_var_type;

        if (IsFloatType(in_var_type) && op_run_low_precision_.count(op_type)) {
          DoInsertCastOp(subgraphes_[i],
                         in_var_node,
                         op_node,
                         in_var_type,
                         framework::TransToProtoVarType(low_precision_),
                         block_desc,
                         &suffix,
                         &cache);
        } else if (IsHalfType(in_var_type) &&
                   op_run_low_precision_.count(op_type) == 0) {
          DoInsertCastOp(subgraphes_[i],
                         in_var_node,
                         op_node,
                         in_var_type,
                         VarType::FP32,
                         block_desc,
                         &suffix,
                         &cache);
        }
      }

      // Special op.
      // fused_multi_transformer's input(CacheKV) and output(CacheKVOut) vars
      // have same name.
      if (GetOpOriginalType(op_type) == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
  VLOG(4) << "insert number of cast op: " << cache.size();
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(auto_mixed_precision_pass,
              paddle::framework::ir::AutoMixedPrecisionPass);