test_lrn_op.py 12.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle
G
gongweibao 已提交
18 19
import unittest
import numpy as np
20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
22
from op_test import OpTest
23
from paddle.fluid import compiler, Program, program_guard
G
gongweibao 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


class TestLRNOp(OpTest):
    def get_input(self):
        ''' TODO(gongweibao): why it's grad diff is so large?
        x = np.ndarray(
            shape=(self.N, self.C, self.H, self.W), dtype=float, order='C')
        for m in range(0, self.N):
            for i in range(0, self.C):
                for h in range(0, self.H):
                    for w in range(0, self.W):
                        x[m][i][h][w] = m * self.C * self.H * self.W +  \
                                        i * self.H * self.W +  \
                                        h * self.W + w + 1
        '''
        x = np.random.rand(self.N, self.C, self.H, self.W).astype("float32")
        return x + 1

    def get_out(self):
M
minqiyang 已提交
43
        start = -(self.n - 1) // 2
G
gongweibao 已提交
44 45
        end = start + self.n

46
        mid = np.empty((self.N, self.C, self.H, self.W)).astype("float32")
G
gongweibao 已提交
47 48 49
        mid.fill(self.k)
        for m in range(0, self.N):
            for i in range(0, self.C):
Q
qingqing01 已提交
50
                for c in range(start, end):
G
gongweibao 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
                    ch = i + c
                    if ch < 0 or ch >= self.C:
                        continue

                    s = mid[m][i][:][:]
                    r = self.x[m][ch][:][:]
                    s += np.square(r) * self.alpha

        mid2 = np.power(mid, -self.beta)
        return np.multiply(self.x, mid2), mid

    def get_attrs(self):
        attrs = {
            'n': self.n,
            'k': self.k,
            'alpha': self.alpha,
67 68
            'beta': self.beta,
            'data_format': self.data_format
G
gongweibao 已提交
69 70 71 72 73
        }
        return attrs

    def setUp(self):
        self.op_type = "lrn"
74 75
        self.init_test_case()

G
gongweibao 已提交
76 77 78 79 80 81 82 83 84 85 86
        self.N = 2
        self.C = 3
        self.H = 5
        self.W = 5

        self.n = 5
        self.k = 2.0
        self.alpha = 0.0001
        self.beta = 0.75
        self.x = self.get_input()
        self.out, self.mid_out = self.get_out()
87 88 89 90
        if self.data_format == 'NHWC':
            self.x = np.transpose(self.x, [0, 2, 3, 1])
            self.out = np.transpose(self.out, [0, 2, 3, 1])
            self.mid_out = np.transpose(self.mid_out, [0, 2, 3, 1])
G
gongweibao 已提交
91 92 93 94 95

        self.inputs = {'X': self.x}
        self.outputs = {'Out': self.out, 'MidOut': self.mid_out}
        self.attrs = self.get_attrs()

96 97 98
    def init_test_case(self):
        self.data_format = 'NCHW'

G
gongweibao 已提交
99 100 101 102
    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
103
        self.check_grad(['X'], 'Out')
G
gongweibao 已提交
104 105


106 107 108 109 110
class TestLRNOpAttrDataFormat(TestLRNOp):
    def init_test_case(self):
        self.data_format = 'NHWC'


111
class TestLRNAPI(unittest.TestCase):
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    def test_case(self):
        data1 = fluid.data(name='data1', shape=[2, 4, 5, 5], dtype='float32')
        data2 = fluid.data(name='data2', shape=[2, 5, 5, 4], dtype='float32')
        out1 = fluid.layers.lrn(data1, data_format='NCHW')
        out2 = fluid.layers.lrn(data2, data_format='NHWC')
        data1_np = np.random.random((2, 4, 5, 5)).astype("float32")
        data2_np = np.transpose(data1_np, [0, 2, 3, 1])

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        results = exe.run(fluid.default_main_program(),
                          feed={"data1": data1_np,
                                "data2": data2_np},
                          fetch_list=[out1, out2],
                          return_numpy=True)

        self.assertTrue(
            np.allclose(results[0], np.transpose(results[1], (0, 3, 1, 2))))

    def test_exception(self):
        input1 = fluid.data(name="input1", shape=[2, 4, 5, 5], dtype="float32")
        input2 = fluid.data(
            name="input2", shape=[2, 4, 5, 5, 5], dtype="float32")

        def _attr_data_fromat():
            out = fluid.layers.lrn(input1, data_format='NDHW')

        def _input_dim_size():
            out = fluid.layers.lrn(input2)

        self.assertRaises(ValueError, _attr_data_fromat)
        self.assertRaises(ValueError, _input_dim_size)


150 151 152 153 154 155 156 157
class TestLRNOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input must be float32
            in_w = fluid.data(name="in_w", shape=[None, 3, 3, 3], dtype="int64")
            self.assertRaises(TypeError, fluid.layers.lrn, in_w)


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
class TestLocalResponseNormFAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_3d_input(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            in_np1 = np.random.random([3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 1))

            input1 = fluid.data(
                name="input1", shape=[3, 40, 40], dtype="float32")
            input2 = fluid.data(
                name="input2", shape=[3, 40, 40], dtype="float32")
            res1 = paddle.nn.functional.local_response_norm(
                x=input1, size=5, data_format='NCL')
            res2 = paddle.nn.functional.local_response_norm(
                x=input2, size=5, data_format='NLC')
            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input1": in_np1,
                                    "input2": in_np2},
                              fetch_list=[res1, res2])

            fetches1_tran = np.transpose(fetches[1], (0, 2, 1))
            self.assertTrue(np.allclose(fetches[0], fetches1_tran))

    def check_static_4d_input(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input1 = fluid.data(
                name="input1", shape=[3, 3, 40, 40], dtype="float32")
            input2 = fluid.data(
                name="input2", shape=[3, 40, 40, 3], dtype="float32")

            res1 = paddle.nn.functional.local_response_norm(
                x=input1, size=5, data_format='NCHW')
            res2 = paddle.nn.functional.local_response_norm(
                x=input2, size=5, data_format='NHWC')

            in_np1 = np.random.random([3, 3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 3, 1))

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input1": in_np1,
                                    "input2": in_np2},
                              fetch_list=[res1, res2])

            fetches1_tran = np.transpose(fetches[1], (0, 3, 1, 2))
            self.assertTrue(np.allclose(fetches[0], fetches1_tran))

    def check_static_5d_input(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input1 = fluid.data(
                name="input1", shape=[3, 3, 3, 40, 40], dtype="float32")
            input2 = fluid.data(
                name="input2", shape=[3, 3, 40, 40, 3], dtype="float32")
            res1 = paddle.nn.functional.local_response_norm(
                x=input1, size=5, data_format='NCDHW')
            res2 = paddle.nn.functional.local_response_norm(
                x=input2, size=5, data_format='NDHWC')

            in_np1 = np.random.random([3, 3, 3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 3, 4, 1))

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input1": in_np1,
                                    "input2": in_np2},
                              fetch_list=[res1, res2])

            fetches1_tran = np.transpose(fetches[1], (0, 4, 1, 2, 3))
            self.assertTrue(np.allclose(fetches[0], fetches1_tran))

    def test_static(self):
        for place in self.places:
            self.check_static_3d_input(place=place)
            self.check_static_4d_input(place=place)
            self.check_static_5d_input(place=place)

    def check_dygraph_3d_input(self, place):
        with fluid.dygraph.guard(place):
            in_np1 = np.random.random([3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 1))

            in1 = paddle.to_tensor(in_np1)
            in2 = paddle.to_tensor(in_np2)

            res1 = paddle.nn.functional.local_response_norm(
                x=in1, size=5, data_format='NCL')
            res2 = paddle.nn.functional.local_response_norm(
                x=in2, size=5, data_format='NLC')

            res2_tran = np.transpose(res2.numpy(), (0, 2, 1))
            self.assertTrue(np.allclose(res1.numpy(), res2_tran))

    def check_dygraph_4d_input(self, place):
        with fluid.dygraph.guard(place):
            in_np1 = np.random.random([3, 3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 3, 1))

            in1 = paddle.to_tensor(in_np1)
            in2 = paddle.to_tensor(in_np2)

            res1 = paddle.nn.functional.local_response_norm(
                x=in1, size=5, data_format='NCHW')
            res2 = paddle.nn.functional.local_response_norm(
                x=in2, size=5, data_format='NHWC')

            res2_tran = np.transpose(res2.numpy(), (0, 3, 1, 2))
            self.assertTrue(np.allclose(res1.numpy(), res2_tran))

    def check_dygraph_5d_input(self, place):
        with fluid.dygraph.guard(place):
            in_np1 = np.random.random([3, 3, 3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 3, 4, 1))

            in1 = paddle.to_tensor(in_np1)
            in2 = paddle.to_tensor(in_np2)

            res1 = paddle.nn.functional.local_response_norm(
                x=in1, size=5, data_format='NCDHW')
            res2 = paddle.nn.functional.local_response_norm(
                x=in2, size=5, data_format='NDHWC')

            res2_tran = np.transpose(res2.numpy(), (0, 4, 1, 2, 3))
            self.assertTrue(np.allclose(res1.numpy(), res2_tran))

    def test_dygraph(self):
        for place in self.places:
            self.check_dygraph_3d_input(place)
            self.check_dygraph_4d_input(place)
            self.check_dygraph_5d_input(place)


class TestLocalResponseNormFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of lrn must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                paddle.nn.functional.local_response_norm(x1, size=5)

            self.assertRaises(TypeError, test_Variable)

            def test_datatype():
                x = fluid.data(name='x', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.local_response_norm(x, size=5)

            self.assertRaises(TypeError, test_datatype)

            def test_dataformat():
                x = fluid.data(name='x', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.local_response_norm(
                    x, size=5, data_format="NCTHW")

            self.assertRaises(ValueError, test_dataformat)

            def test_dim():
                x = fluid.data(name='x', shape=[3, 4], dtype="float32")
                paddle.nn.functional.local_response_norm(x, size=5)

            self.assertRaises(ValueError, test_dim)


class TestLocalResponseNormCAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in1 = paddle.rand(shape=(3, 3, 40, 40), dtype="float32")
                in2 = paddle.transpose(in1, [0, 2, 3, 1])

                m1 = paddle.nn.LocalResponseNorm(size=5, data_format='NCHW')
                m2 = paddle.nn.LocalResponseNorm(size=5, data_format='NHWC')

                res1 = m1(in1)
                res2 = m2(in2)

                res2_tran = np.transpose(res2.numpy(), (0, 3, 1, 2))
                self.assertTrue(np.allclose(res1.numpy(), res2_tran))


G
gongweibao 已提交
350 351
if __name__ == "__main__":
    unittest.main()