__init__.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle.fluid import core
17
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
18 19 20 21 22 23 24 25 26

from .streams import Stream  # noqa: F401
from .streams import Event  # noqa: F401

__all__ = [
    'Stream',
    'Event',
    'current_stream',
    'synchronize',
L
Linjie Chen 已提交
27
    'device_count',
28
    'empty_cache',
29
    'stream_guard',
30
    'get_device_properties',
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
]


def current_stream(device=None):
    '''
    Return the current CUDA stream by the device.

    Parameters:
        device(paddle.CUDAPlace()|int, optional): The device or the ID of the device which want to get stream from. 
        If device is None, the device is the current device. Default: None.
    
    Returns:
        CUDAStream: the stream to the device.
    
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            s1 = paddle.device.cuda.current_stream()

            s2 = paddle.device.cuda.current_stream(0)

            s3 = paddle.device.cuda.current_stream(paddle.CUDAPlace(0))

    '''

    device_id = -1

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        else:
            raise ValueError("device type must be int or paddle.CUDAPlace")

    return core._get_current_stream(device_id)


def synchronize(device=None):
    '''
    Wait for the compute on the given CUDA device to finish.

    Parameters:
        device(paddle.CUDAPlace()|int, optional): The device or the ID of the device.
        If device is None, the device is the current device. Default: None.
    
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            paddle.device.cuda.synchronize()
            paddle.device.cuda.synchronize(0)
            paddle.device.cuda.synchronize(paddle.CUDAPlace(0))

    '''

    device_id = -1

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        else:
            raise ValueError("device type must be int or paddle.CUDAPlace")

    return core._device_synchronize(device_id)
L
Linjie Chen 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124


def device_count():
    '''
    Return the number of GPUs available.
    
    Returns:
        int: the number of GPUs available.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.cuda.device_count()

    '''

    num_gpus = core.get_cuda_device_count() if hasattr(
        core, 'get_cuda_device_count') else 0

    return num_gpus
125 126 127


def empty_cache():
128
    '''
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    Releases idle cached memory held by the allocator so that those can be used in other GPU
    application and visible in `nvidia-smi`. In most cases you don't need to use this function,
    Paddle does not release the memory back to the OS when you remove Tensors on the GPU,
    Because it keeps gpu memory in a pool so that next allocations can be done much faster.

    Examples:
        .. code-block:: python

            import paddle

            # required: gpu
            paddle.set_device("gpu")
            tensor = paddle.randn([512, 512, 512], "float")
            del tensor
            paddle.device.cuda.empty_cache()
144
    '''
145 146 147

    if core.is_compiled_with_cuda():
        core.cuda_empty_cache()
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179


def _set_current_stream(stream):
    '''
    Set the current stream.

    Parameters:
        stream(paddle.device.cuda.Stream): The selected stream.

    Returns:
        CUDAStream: The previous stream.

    '''

    if not isinstance(stream, paddle.device.cuda.Stream):
        raise TypeError("stream type should be paddle.device.cuda.Stream")

    cur_stream = current_stream()
    if id(stream) == id(cur_stream):
        return stream
    return core._set_current_stream(stream)


@signature_safe_contextmanager
def stream_guard(stream):
    '''
    **Notes**:
        **This API only supports dygraph mode currently.**

    A context manager that specifies the current stream context by the given stream.

    Parameters:
S
Siming Dai 已提交
180
        stream(paddle.device.cuda.Stream): the selected stream. If stream is None, just yield.
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            s = paddle.device.cuda.Stream()
            data1 = paddle.ones(shape=[20])
            data2 = paddle.ones(shape=[20])
            with paddle.device.cuda.stream_guard(s):
                data3 = data1 + data2

    '''

    if stream is not None and not isinstance(stream, paddle.device.cuda.Stream):
        raise TypeError("stream type should be paddle.device.cuda.Stream")

    cur_stream = current_stream()
    if stream is None or id(stream) == id(cur_stream):
        yield
    else:
        pre_stream = _set_current_stream(stream)
        try:
            yield
        finally:
            stream = _set_current_stream(pre_stream)
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273


def get_device_properties(device=None):
    '''
    Return the properties of given device.

    Args:
        device(paddle.CUDAPlace or int or str): The device, the id of the device 
            or the string name of device like 'gpu:x' which to get the properties of 
            the device from. If device is None, the device is the current device. 
            Default: None.

    Returns:
        _gpuDeviceProperties: the properties of the device which include ASCII string 
        identifying device, major compute capability, minor compute capability, global 
        memory available on device and the number of multiprocessors on the device.

    Examples:
    
        .. code-block:: python

            # required: gpu

            import paddle
            paddle.device.cuda.get_device_properties()
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

            paddle.device.cuda.get_device_properties(0)
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

            paddle.device.cuda.get_device_properties('gpu:0')
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

            paddle.device.cuda.get_device_properties(paddle.CUDAPlace(0))
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

    '''

    if not core.is_compiled_with_cuda():
        raise ValueError(
            "The API paddle.device.cuda.get_device_properties is not supported in "
            "CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support "
            "to call this API.")

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        elif isinstance(device, str):
            if device.startswith('gpu:'):
                device_id = int(device[4:])
            else:
                raise ValueError(
                    "The current string {} is not expected. Because paddle.device."
                    "cuda.get_device_properties only support string which is like 'gpu:x'. "
                    "Please input appropriate string again!".format(device))
        else:
            raise ValueError(
                "The device type {} is not expected. Because paddle.device.cuda."
                "get_device_properties only support int, str or paddle.CUDAPlace. "
                "Please input appropriate device again!".format(device))
    else:
        device_id = -1

    return core.get_device_properties(device_id)