test_SIMDFunctions.cpp 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/math/SIMDFunctions.h"
#include "paddle/utils/Util.h"

#include <gtest/gtest.h>

#include <algorithm>
Y
Yu Yang 已提交
21
#include <functional>
Z
zhangjinchao01 已提交
22
#include <memory>
Y
Yu Yang 已提交
23
#include <random>
Z
zhangjinchao01 已提交
24

25
#include <stdlib.h>
Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35 36 37
#include <time.h>

static constexpr size_t VECTOR_LEN = 3072;
static constexpr size_t BATCH_SIZE = 64;
static constexpr size_t ALIGN = 32;
static_assert(VECTOR_LEN % ALIGN == 0, "VECTOR_LEN % ALIGN == 0");
static_assert(BATCH_SIZE % ALIGN == 0, "BATCH_SIZE % ALIGN == 0");
static constexpr float EPSILON = 1e-5;
static std::mt19937 RandomEngine(time(0));

inline static std::unique_ptr<float[]> NewVector(size_t len = VECTOR_LEN,
                                                 size_t align = ALIGN) {
38
  float* ptr;
Y
Yu Yang 已提交
39
  CHECK_EQ(posix_memalign((void**)&ptr, align, len * sizeof(float)), 0);
40
  return std::unique_ptr<float[]>(ptr);
Z
zhangjinchao01 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
}

inline static std::unique_ptr<float[]> NewRandomVector(size_t len = VECTOR_LEN,
                                                       size_t align = ALIGN) {
  std::uniform_real_distribution<float> dist(-100.0f, 100.0f);
  auto generator = std::bind(dist, RandomEngine);
  auto retv = NewVector(len, align);
  std::generate_n(retv.get(), len, generator);
  return retv;
}

TEST(SIMDFunction, addTo) {
  typedef std::function<void(float*, const float*, size_t)> AddToMethodType;

  AddToMethodType naive = paddle::simd::naive::addTo<float>;
  AddToMethodType simd = paddle::simd::addTo<float>;

  auto A = NewRandomVector();
  auto B = NewRandomVector();

  auto ACopy = NewVector();
  memcpy(ACopy.get(), A.get(), VECTOR_LEN * sizeof(float));

  naive(A.get(), B.get(), VECTOR_LEN);
  simd(ACopy.get(), B.get(), VECTOR_LEN);

  for (size_t i = 0; i < VECTOR_LEN; ++i) {
    ASSERT_NEAR(A[i], ACopy[i], EPSILON);
  }
}

TEST(SIMDFunction, batchAddTo) {
  auto A = NewRandomVector();
  auto ACopy = NewVector();
  memcpy(ACopy.get(), A.get(), sizeof(float) * VECTOR_LEN);

  std::vector<std::unique_ptr<float[]>> B;
  for (size_t i = 0; i < BATCH_SIZE; ++i) {
    B.emplace_back(NewRandomVector());
  }
  std::unique_ptr<float* []> BRaw(new float*[BATCH_SIZE]);
  for (size_t i = 0; i < BATCH_SIZE; ++i) {
    BRaw[i] = B[i].get();
  }

  typedef std::function<void(float*, const float**, int, size_t)>
      BatchAddToMethodType;

  BatchAddToMethodType naive = paddle::simd::naive::batchAddTo<float>;
  BatchAddToMethodType simd = paddle::simd::batchAddTo<float>;

  naive(A.get(), (const float**)BRaw.get(), BATCH_SIZE, VECTOR_LEN);
  simd(ACopy.get(), (const float**)BRaw.get(), BATCH_SIZE, VECTOR_LEN);

  for (size_t i = 0; i < VECTOR_LEN; ++i) {
    ASSERT_NEAR(A[i], ACopy[i], EPSILON);
  }
}

TEST(SIMDFunction, colMax) {
  auto A = NewRandomVector(VECTOR_LEN * BATCH_SIZE);
  auto naiveResult = NewVector(BATCH_SIZE);
  auto simdResult = NewVector(BATCH_SIZE);

  typedef std::function<void(float*, const float*, int, int)> ColMaxMethodType;
  ColMaxMethodType naive = paddle::simd::naive::colMax<float>;
  ColMaxMethodType simd = paddle::simd::colMax<float>;

  naive(naiveResult.get(), A.get(), BATCH_SIZE, VECTOR_LEN);
  simd(simdResult.get(), A.get(), BATCH_SIZE, VECTOR_LEN);

  for (size_t i = 0; i < BATCH_SIZE; ++i) {
    ASSERT_NEAR(naiveResult[i], simdResult[i], EPSILON);
  }
}

TEST(SIMDFunction, decayL1_WithLR) {
  auto dest = NewRandomVector();
  auto src = NewRandomVector();
  auto lr = NewRandomVector();
  auto lambda = 0.23f;

  auto simd_dest = NewVector();
  memcpy(simd_dest.get(), dest.get(), sizeof(float) * VECTOR_LEN);

  typedef std::function<void(float*, float*, float*, float, size_t)>
      DecayL1MethodType;

129 130
  DecayL1MethodType naive = [](
      float* d, float* s, float* lr, float l, size_t len) {
Z
zhangjinchao01 已提交
131 132 133
    paddle::simd::naive::decayL1<float>(d, s, lr, l, len);
  };

134 135
  DecayL1MethodType simd = [](
      float* d, float* s, float* lr, float l, size_t len) {
Z
zhangjinchao01 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    paddle::simd::decayL1<float>(d, s, lr, l, len);
  };

  naive(dest.get(), src.get(), lr.get(), lambda, VECTOR_LEN);
  simd(simd_dest.get(), src.get(), lr.get(), lambda, VECTOR_LEN);

  for (size_t i = 0; i < VECTOR_LEN; ++i) {
    ASSERT_NEAR(dest[i], simd_dest[i], EPSILON);
  }
}

TEST(SIMDFunction, decayL1_WithoutLR) {
  auto dest = NewRandomVector();
  auto src = NewRandomVector();
  auto lambda = 0.23;

  auto simd_dest = NewVector();
  memcpy(simd_dest.get(), dest.get(), sizeof(float) * VECTOR_LEN);

  typedef std::function<void(float*, float*, float, size_t)> DecayL1MethodType;

  DecayL1MethodType naive = [](float* d, float* s, float l, size_t len) {
    paddle::simd::naive::decayL1<float>(d, s, l, len);
  };

  DecayL1MethodType simd = [](float* d, float* s, float l, size_t len) {
    paddle::simd::decayL1<float>(d, s, l, len);
  };

  naive(dest.get(), src.get(), lambda, VECTOR_LEN);
  simd(simd_dest.get(), src.get(), lambda, VECTOR_LEN);

  for (size_t i = 0; i < VECTOR_LEN; ++i) {
    ASSERT_NEAR(dest[i], simd_dest[i], EPSILON);
  }
}