generate_proposal_labels_op.cc 23.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <math.h>
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/detection/bbox_util.h"
18
#include "paddle/fluid/operators/gather.h"
C
chengduo 已提交
19
#include "paddle/fluid/operators/math/concat_and_split.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
const int kBoxDim = 4;

template <typename T>
void AppendRois(LoDTensor* out, int64_t offset, Tensor* to_add) {
  auto* out_data = out->data<T>();
  auto* to_add_data = to_add->data<T>();
  memcpy(out_data + offset, to_add_data, to_add->numel() * sizeof(T));
}

class GenerateProposalLabelsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("RpnRois"),
                   "Input(RpnRois) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("GtClasses"),
                   "Input(GtClasses) shouldn't be null.");
45 46
    PADDLE_ENFORCE(ctx->HasInput("IsCrowd"),
                   "Input(IsCrowd) shouldn't be null.");
47 48
    PADDLE_ENFORCE(ctx->HasInput("GtBoxes"),
                   "Input(GtBoxes) shouldn't be null.");
49
    PADDLE_ENFORCE(ctx->HasInput("ImInfo"), "Input(ImInfo) shouldn't be null.");
50

51 52 53
    PADDLE_ENFORCE(
        ctx->HasOutput("Rois"),
        "Output(Rois) of GenerateProposalLabelsOp should not be null");
54 55
    PADDLE_ENFORCE(
        ctx->HasOutput("LabelsInt32"),
56
        "Output(LabelsInt32) of GenerateProposalLabelsOp should not be null");
57 58
    PADDLE_ENFORCE(
        ctx->HasOutput("BboxTargets"),
59 60 61 62 63 64 65
        "Output(BboxTargets) of GenerateProposalLabelsOp should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("BboxInsideWeights"),
                   "Output(BboxInsideWeights) of GenerateProposalLabelsOp "
                   "should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("BboxOutsideWeights"),
                   "Output(BboxOutsideWeights) of GenerateProposalLabelsOp "
                   "should not be null");
66 67 68

    auto rpn_rois_dims = ctx->GetInputDim("RpnRois");
    auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
69
    auto im_info_dims = ctx->GetInputDim("ImInfo");
70 71 72 73 74

    PADDLE_ENFORCE_EQ(rpn_rois_dims.size(), 2,
                      "The rank of Input(RpnRois) must be 2.");
    PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2,
                      "The rank of Input(GtBoxes) must be 2.");
75 76
    PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
                      "The rank of Input(ImInfo) must be 2.");
77 78 79 80

    int class_nums = ctx->Attrs().Get<int>("class_nums");

    ctx->SetOutputDim("Rois", {-1, 4});
81
    ctx->SetOutputDim("LabelsInt32", {-1, 1});
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    ctx->SetOutputDim("BboxTargets", {-1, 4 * class_nums});
    ctx->SetOutputDim("BboxInsideWeights", {-1, 4 * class_nums});
    ctx->SetOutputDim("BboxOutsideWeights", {-1, 4 * class_nums});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("RpnRois"));
    return framework::OpKernelType(data_type, platform::CPUPlace());
  }
};

template <typename T>
void Concat(const platform::CPUDeviceContext& context,
            const Tensor& in_tensor_a, const Tensor& in_tensor_b,
            Tensor* out_tensor) {
  int axis = 0;
  std::vector<Tensor> inputs;
  inputs.emplace_back(in_tensor_a);
  inputs.emplace_back(in_tensor_b);
  math::ConcatFunctor<platform::CPUDeviceContext, T> concat_functor;
  concat_functor(context, inputs, axis, out_tensor);
}

template <typename T>
std::vector<std::vector<int>> SampleFgBgGt(
    const platform::CPUDeviceContext& context, Tensor* iou,
110 111 112
    const Tensor& is_crowd, const int batch_size_per_im,
    const float fg_fraction, const float fg_thresh, const float bg_thresh_hi,
    const float bg_thresh_lo, std::minstd_rand engine, const bool use_random) {
113 114 115
  std::vector<int> fg_inds;
  std::vector<int> bg_inds;
  std::vector<int> gt_inds;
116 117 118
  int64_t gt_num = is_crowd.numel();
  const int* crowd_data = is_crowd.data<int>();
  T* proposal_to_gt_overlaps = iou->data<T>();
119 120 121 122 123 124 125 126
  int64_t row = iou->dims()[0];
  int64_t col = iou->dims()[1];
  float epsilon = 0.00001;

  // Follow the Faster RCNN's implementation
  for (int64_t i = 0; i < row; ++i) {
    const T* v = proposal_to_gt_overlaps + i * col;
    T max_overlap = *std::max_element(v, v + col);
127 128 129
    if ((i < gt_num) && (crowd_data[i])) {
      max_overlap = -1.0;
    }
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if (max_overlap > fg_thresh) {
      for (int64_t j = 0; j < col; ++j) {
        T val = proposal_to_gt_overlaps[i * col + j];
        auto diff = std::abs(max_overlap - val);
        if (diff < epsilon) {
          fg_inds.emplace_back(i);
          gt_inds.emplace_back(j);
          break;
        }
      }
    } else {
      if ((max_overlap >= bg_thresh_lo) && (max_overlap < bg_thresh_hi)) {
        bg_inds.emplace_back(i);
      }
    }
  }

  // Reservoir Sampling
148
  std::uniform_real_distribution<float> uniform(0, 1);
149 150 151
  int fg_rois_per_im = std::floor(batch_size_per_im * fg_fraction);
  int fg_rois_this_image = fg_inds.size();
  int fg_rois_per_this_image = std::min(fg_rois_per_im, fg_rois_this_image);
152 153 154 155 156 157 158 159 160
  if (use_random) {
    const int64_t fg_size = static_cast<int64_t>(fg_inds.size());
    if (fg_size > fg_rois_per_this_image) {
      for (int64_t i = fg_rois_per_this_image; i < fg_size; ++i) {
        int rng_ind = std::floor(uniform(engine) * i);
        if (rng_ind < fg_rois_per_this_image) {
          std::iter_swap(fg_inds.begin() + rng_ind, fg_inds.begin() + i);
          std::iter_swap(gt_inds.begin() + rng_ind, gt_inds.begin() + i);
        }
161 162 163 164 165 166 167 168 169 170 171
      }
    }
  }
  std::vector<int> new_fg_inds(fg_inds.begin(),
                               fg_inds.begin() + fg_rois_per_this_image);
  std::vector<int> new_gt_inds(gt_inds.begin(),
                               gt_inds.begin() + fg_rois_per_this_image);

  int bg_rois_per_image = batch_size_per_im - fg_rois_per_this_image;
  int bg_rois_this_image = bg_inds.size();
  int bg_rois_per_this_image = std::min(bg_rois_per_image, bg_rois_this_image);
172 173 174 175 176 177 178 179
  if (use_random) {
    const int64_t bg_size = static_cast<int64_t>(bg_inds.size());
    if (bg_size > bg_rois_per_this_image) {
      for (int64_t i = bg_rois_per_this_image; i < bg_size; ++i) {
        int rng_ind = std::floor(uniform(engine) * i);
        if (rng_ind < fg_rois_per_this_image)
          std::iter_swap(bg_inds.begin() + rng_ind, bg_inds.begin() + i);
      }
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    }
  }
  std::vector<int> new_bg_inds(bg_inds.begin(),
                               bg_inds.begin() + bg_rois_per_this_image);
  std::vector<std::vector<int>> res;
  res.emplace_back(new_fg_inds);
  res.emplace_back(new_bg_inds);
  res.emplace_back(new_gt_inds);
  return res;
}

template <typename T>
void GatherBoxesLabels(const platform::CPUDeviceContext& context,
                       const Tensor& boxes, const Tensor& gt_boxes,
                       const Tensor& gt_classes,
                       const std::vector<int>& fg_inds,
                       const std::vector<int>& bg_inds,
                       const std::vector<int>& gt_inds, Tensor* sampled_boxes,
                       Tensor* sampled_labels, Tensor* sampled_gts) {
  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  Tensor fg_inds_t, bg_inds_t, gt_box_inds_t, gt_label_inds_t;
  int* fg_inds_data = fg_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
  int* bg_inds_data = bg_inds_t.mutable_data<int>({bg_num}, context.GetPlace());
  int* gt_box_inds_data =
205
      gt_box_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  int* gt_label_inds_data =
      gt_label_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
  std::copy(fg_inds.begin(), fg_inds.end(), fg_inds_data);
  std::copy(bg_inds.begin(), bg_inds.end(), bg_inds_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_box_inds_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_label_inds_data);

  Tensor fg_boxes, bg_boxes, fg_labels, bg_labels;
  fg_boxes.mutable_data<T>({fg_num, kBoxDim}, context.GetPlace());
  CPUGather<T>(context, boxes, fg_inds_t, &fg_boxes);
  bg_boxes.mutable_data<T>({bg_num, kBoxDim}, context.GetPlace());
  CPUGather<T>(context, boxes, bg_inds_t, &bg_boxes);
  Concat<T>(context, fg_boxes, bg_boxes, sampled_boxes);
  CPUGather<T>(context, gt_boxes, gt_box_inds_t, sampled_gts);
  fg_labels.mutable_data<int>({fg_num}, context.GetPlace());
  CPUGather<int>(context, gt_classes, gt_label_inds_t, &fg_labels);
  bg_labels.mutable_data<int>({bg_num}, context.GetPlace());
  math::set_constant(context, &bg_labels, 0);
  Concat<int>(context, fg_labels, bg_labels, sampled_labels);
}

template <typename T>
std::vector<Tensor> SampleRoisForOneImage(
229 230 231 232
    const platform::CPUDeviceContext& context, const Tensor& rpn_rois_in,
    const Tensor& gt_classes, const Tensor& is_crowd, const Tensor& gt_boxes,
    const Tensor& im_info, const int batch_size_per_im, const float fg_fraction,
    const float fg_thresh, const float bg_thresh_hi, const float bg_thresh_lo,
233
    const std::vector<float>& bbox_reg_weights, const int class_nums,
234
    std::minstd_rand engine, bool use_random) {
235 236 237 238 239 240 241 242 243
  auto im_scale = im_info.data<T>()[2];

  Tensor rpn_rois;
  rpn_rois.mutable_data<T>(rpn_rois_in.dims(), context.GetPlace());
  T* rpn_rois_dt = rpn_rois.data<T>();
  const T* rpn_rois_in_dt = rpn_rois_in.data<T>();
  for (int i = 0; i < rpn_rois.numel(); ++i) {
    rpn_rois_dt[i] = rpn_rois_in_dt[i] / im_scale;
  }
244 245

  Tensor boxes;
246
  int proposals_num = gt_boxes.dims()[0] + rpn_rois.dims()[0];
247
  boxes.mutable_data<T>({proposals_num, kBoxDim}, context.GetPlace());
248
  Concat<T>(context, gt_boxes, rpn_rois, &boxes);
249 250 251

  // Overlaps
  Tensor proposal_to_gt_overlaps;
252
  proposal_to_gt_overlaps.mutable_data<T>({proposals_num, gt_boxes.dims()[0]},
253
                                          context.GetPlace());
254
  BboxOverlaps<T>(boxes, gt_boxes, &proposal_to_gt_overlaps);
255 256 257

  // Generate proposal index
  std::vector<std::vector<int>> fg_bg_gt = SampleFgBgGt<T>(
258
      context, &proposal_to_gt_overlaps, is_crowd, batch_size_per_im,
259
      fg_fraction, fg_thresh, bg_thresh_hi, bg_thresh_lo, engine, use_random);
260 261 262 263 264 265
  std::vector<int> fg_inds = fg_bg_gt[0];
  std::vector<int> bg_inds = fg_bg_gt[1];
  std::vector<int> gt_inds = fg_bg_gt[2];

  // Gather boxes and labels
  Tensor sampled_boxes, sampled_labels, sampled_gts;
266 267 268
  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  int boxes_num = fg_num + bg_num;
269 270 271
  framework::DDim bbox_dim({boxes_num, kBoxDim});
  sampled_boxes.mutable_data<T>(bbox_dim, context.GetPlace());
  sampled_labels.mutable_data<int>({boxes_num}, context.GetPlace());
272
  sampled_gts.mutable_data<T>({fg_num, kBoxDim}, context.GetPlace());
273
  GatherBoxesLabels<T>(context, boxes, gt_boxes, gt_classes, fg_inds, bg_inds,
274 275 276 277 278
                       gt_inds, &sampled_boxes, &sampled_labels, &sampled_gts);

  // Compute targets
  Tensor bbox_targets_single;
  bbox_targets_single.mutable_data<T>(bbox_dim, context.GetPlace());
279 280
  BoxToDelta<T>(fg_num, sampled_boxes, sampled_gts, bbox_reg_weights.data(),
                false, &bbox_targets_single);
281 282 283 284 285 286

  // Scale rois
  Tensor sampled_rois;
  sampled_rois.mutable_data<T>(sampled_boxes.dims(), context.GetPlace());
  auto sampled_rois_et = framework::EigenTensor<T, 2>::From(sampled_rois);
  auto sampled_boxes_et = framework::EigenTensor<T, 2>::From(sampled_boxes);
287
  sampled_rois_et = sampled_boxes_et * im_scale;
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

  // Expand box targets
  Tensor bbox_targets, bbox_inside_weights, bbox_outside_weights;
  framework::DDim bbox_expand_dim({boxes_num, kBoxDim * class_nums});
  bbox_targets.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  bbox_inside_weights.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  bbox_outside_weights.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  math::set_constant(context, &bbox_targets, 0.0);
  math::set_constant(context, &bbox_inside_weights, 0.0);
  math::set_constant(context, &bbox_outside_weights, 0.0);

  auto* bbox_targets_single_data = bbox_targets_single.data<T>();
  auto* sampled_labels_data = sampled_labels.data<int>();
  auto* bbox_targets_data = bbox_targets.data<T>();
  auto* bbox_inside_weights_data = bbox_inside_weights.data<T>();
  auto* bbox_outside_weights_data = bbox_outside_weights.data<T>();
  int width = kBoxDim * class_nums;
  for (int64_t i = 0; i < boxes_num; ++i) {
    int label = sampled_labels_data[i];
    if (label > 0) {
      int dst_idx = i * width + kBoxDim * label;
      int src_idx = kBoxDim * i;
      bbox_targets_data[dst_idx] = bbox_targets_single_data[src_idx];
      bbox_targets_data[dst_idx + 1] = bbox_targets_single_data[src_idx + 1];
      bbox_targets_data[dst_idx + 2] = bbox_targets_single_data[src_idx + 2];
      bbox_targets_data[dst_idx + 3] = bbox_targets_single_data[src_idx + 3];
      bbox_inside_weights_data[dst_idx] = 1;
      bbox_inside_weights_data[dst_idx + 1] = 1;
      bbox_inside_weights_data[dst_idx + 2] = 1;
      bbox_inside_weights_data[dst_idx + 3] = 1;
      bbox_outside_weights_data[dst_idx] = 1;
      bbox_outside_weights_data[dst_idx + 1] = 1;
      bbox_outside_weights_data[dst_idx + 2] = 1;
      bbox_outside_weights_data[dst_idx + 3] = 1;
    }
  }
  std::vector<Tensor> res;
  res.emplace_back(sampled_rois);
  res.emplace_back(sampled_labels);
  res.emplace_back(bbox_targets);
  res.emplace_back(bbox_inside_weights);
  res.emplace_back(bbox_outside_weights);
  return res;
}

template <typename T>
class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* rpn_rois = context.Input<LoDTensor>("RpnRois");
    auto* gt_classes = context.Input<LoDTensor>("GtClasses");
339
    auto* is_crowd = context.Input<LoDTensor>("IsCrowd");
340
    auto* gt_boxes = context.Input<LoDTensor>("GtBoxes");
341
    auto* im_info = context.Input<LoDTensor>("ImInfo");
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

    auto* rois = context.Output<LoDTensor>("Rois");
    auto* labels_int32 = context.Output<LoDTensor>("LabelsInt32");
    auto* bbox_targets = context.Output<LoDTensor>("BboxTargets");
    auto* bbox_inside_weights = context.Output<LoDTensor>("BboxInsideWeights");
    auto* bbox_outside_weights =
        context.Output<LoDTensor>("BboxOutsideWeights");

    int batch_size_per_im = context.Attr<int>("batch_size_per_im");
    float fg_fraction = context.Attr<float>("fg_fraction");
    float fg_thresh = context.Attr<float>("fg_thresh");
    float bg_thresh_hi = context.Attr<float>("bg_thresh_hi");
    float bg_thresh_lo = context.Attr<float>("bg_thresh_lo");
    std::vector<float> bbox_reg_weights =
        context.Attr<std::vector<float>>("bbox_reg_weights");
    int class_nums = context.Attr<int>("class_nums");
358
    bool use_random = context.Attr<bool>("use_random");
359 360 361 362 363 364

    PADDLE_ENFORCE_EQ(rpn_rois->lod().size(), 1UL,
                      "GenerateProposalLabelsOp rpn_rois needs 1 level of LoD");
    PADDLE_ENFORCE_EQ(
        gt_classes->lod().size(), 1UL,
        "GenerateProposalLabelsOp gt_classes needs 1 level of LoD");
365 366
    PADDLE_ENFORCE_EQ(is_crowd->lod().size(), 1UL,
                      "GenerateProposalLabelsOp is_crowd needs 1 level of LoD");
367 368 369 370 371
    PADDLE_ENFORCE_EQ(gt_boxes->lod().size(), 1UL,
                      "GenerateProposalLabelsOp gt_boxes needs 1 level of LoD");
    int64_t n = static_cast<int64_t>(rpn_rois->lod().back().size() - 1);

    rois->mutable_data<T>({n * batch_size_per_im, kBoxDim}, context.GetPlace());
372
    labels_int32->mutable_data<int>({n * batch_size_per_im, 1},
373 374 375 376 377 378 379 380 381 382
                                    context.GetPlace());
    bbox_targets->mutable_data<T>({n * batch_size_per_im, kBoxDim * class_nums},
                                  context.GetPlace());
    bbox_inside_weights->mutable_data<T>(
        {n * batch_size_per_im, kBoxDim * class_nums}, context.GetPlace());
    bbox_outside_weights->mutable_data<T>(
        {n * batch_size_per_im, kBoxDim * class_nums}, context.GetPlace());

    std::random_device rnd;
    std::minstd_rand engine;
383
    int seed = rnd();
384 385 386 387 388 389 390 391 392 393
    engine.seed(seed);

    framework::LoD lod;
    std::vector<size_t> lod0(1, 0);

    int64_t num_rois = 0;
    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

    auto rpn_rois_lod = rpn_rois->lod().back();
    auto gt_classes_lod = gt_classes->lod().back();
394
    auto is_crowd_lod = is_crowd->lod().back();
395
    auto gt_boxes_lod = gt_boxes->lod().back();
396
    for (int i = 0; i < n; ++i) {
397 398 399 400
      Tensor rpn_rois_slice =
          rpn_rois->Slice(rpn_rois_lod[i], rpn_rois_lod[i + 1]);
      Tensor gt_classes_slice =
          gt_classes->Slice(gt_classes_lod[i], gt_classes_lod[i + 1]);
401 402
      Tensor is_crowd_slice =
          is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]);
403 404
      Tensor gt_boxes_slice =
          gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]);
405
      Tensor im_info_slice = im_info->Slice(i, i + 1);
406
      std::vector<Tensor> tensor_output = SampleRoisForOneImage<T>(
407 408
          dev_ctx, rpn_rois_slice, gt_classes_slice, is_crowd_slice,
          gt_boxes_slice, im_info_slice, batch_size_per_im, fg_fraction,
409 410
          fg_thresh, bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums,
          engine, use_random);
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
      Tensor sampled_rois = tensor_output[0];
      Tensor sampled_labels_int32 = tensor_output[1];
      Tensor sampled_bbox_targets = tensor_output[2];
      Tensor sampled_bbox_inside_weights = tensor_output[3];
      Tensor sampled_bbox_outside_weights = tensor_output[4];

      AppendRois<T>(rois, kBoxDim * num_rois, &sampled_rois);
      AppendRois<int>(labels_int32, num_rois, &sampled_labels_int32);
      AppendRois<T>(bbox_targets, kBoxDim * num_rois * class_nums,
                    &sampled_bbox_targets);
      AppendRois<T>(bbox_inside_weights, kBoxDim * num_rois * class_nums,
                    &sampled_bbox_inside_weights);
      AppendRois<T>(bbox_outside_weights, kBoxDim * num_rois * class_nums,
                    &sampled_bbox_outside_weights);

      num_rois += sampled_rois.dims()[0];
      lod0.emplace_back(num_rois);
    }

    lod.emplace_back(lod0);
    rois->set_lod(lod);
    labels_int32->set_lod(lod);
    bbox_targets->set_lod(lod);
    bbox_inside_weights->set_lod(lod);
    bbox_outside_weights->set_lod(lod);
    rois->Resize({num_rois, kBoxDim});
437
    labels_int32->Resize({num_rois, 1});
438 439 440 441 442 443 444 445 446
    bbox_targets->Resize({num_rois, kBoxDim * class_nums});
    bbox_inside_weights->Resize({num_rois, kBoxDim * class_nums});
    bbox_outside_weights->Resize({num_rois, kBoxDim * class_nums});
  }
};

class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
B
buxingyuan 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    AddInput(
        "RpnRois",
        "(LoDTensor), This input is a 2D LoDTensor with shape [N, 4]. "
        "N is the number of the GenerateProposalOp's output, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddInput("GtClasses",
             "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
             "M is the number of groundtruth, "
             "each element is a class label of groundtruth.");
    AddInput(
        "IsCrowd",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
        "M is the number of groundtruth, "
        "each element is a flag indicates whether a groundtruth is crowd.");
    AddInput(
        "GtBoxes",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 4]. "
        "M is the number of groundtruth, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddInput("ImInfo",
             "(Tensor), This input is a 2D Tensor with shape [B, 3]. "
             "B is the number of input images, "
             "each element consists of im_height, im_width, im_scale.");

    AddOutput(
        "Rois",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4]. "
        "P usuall equal to  batch_size_per_im * batch_size, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddOutput("LabelsInt32",
477
              "(LoDTensor), This output is a 2D LoDTensor with shape [P, 1], "
B
buxingyuan 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
              "each element repersents a class label of a roi");
    AddOutput("BboxTargets",
              "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
              "class_nums], "
              "each element repersents a box label of a roi");
    AddOutput(
        "BboxInsideWeights",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
        "class_nums], "
        "each element indicates whether a box should contribute to loss.");
    AddOutput(
        "BboxOutsideWeights",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
        "class_nums], "
        "each element indicates whether a box should contribute to loss.");

    AddAttr<int>("batch_size_per_im", "Batch size of rois per images.");
    AddAttr<float>("fg_fraction",
                   "Foreground fraction in total batch_size_per_im.");
    AddAttr<float>(
        "fg_thresh",
        "Overlap threshold which is used to chose foreground sample.");
    AddAttr<float>("bg_thresh_hi",
                   "Overlap threshold upper bound which is used to chose "
                   "background sample.");
    AddAttr<float>("bg_thresh_lo",
                   "Overlap threshold lower bound which is used to chose "
                   "background sample.");
    AddAttr<std::vector<float>>("bbox_reg_weights", "Box regression weights.");
    AddAttr<int>("class_nums", "Class number.");
    AddAttr<bool>(
        "use_random",
        "Use random sampling to choose foreground and background boxes.")
        .SetDefault(true);
512 513

    AddComment(R"DOC(
B
buxingyuan 已提交
514
This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
515
to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
516 517 518

RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
519
If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
520 521
If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
then it was considered as a background sample.
B
buxingyuan 已提交
522
After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
523
then we apply random sampling to make sure
B
buxingyuan 已提交
524
the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
525 526 527 528

For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.
    )DOC");
529 530 531 532 533 534 535 536 537 538 539 540 541
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(generate_proposal_labels, ops::GenerateProposalLabelsOp,
                  ops::GenerateProposalLabelsOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(generate_proposal_labels,
                       ops::GenerateProposalLabelsKernel<float>,
                       ops::GenerateProposalLabelsKernel<double>);