dirichlet.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle

from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.framework import in_dygraph_mode
from ..fluid.layer_helper import LayerHelper
from .exponential_family import ExponentialFamily


class Dirichlet(ExponentialFamily):
    r"""
    Dirichlet distribution with parameter concentration

    The Dirichlet distribution is defined over the `(k-1)-simplex` using a 
    positive, lenght-k vector concentration(`k > 1`).
    The Dirichlet is identically the Beta distribution when `k = 2`.

    The probability density function (pdf) is

    .. math::

        f(x_1,...,x_k; \alpha_1,...,\alpha_k) = \frac{1}{B(\alpha)} \prod_{i=1}^{k}x_i^{\alpha_i-1} 

    The normalizing constant is the multivariate beta function.

    Args:
        concentration (Tensor): concentration parameter of dirichlet 
            distribution

    Examples:

        .. code-block:: python

            import paddle

            dirichlet = paddle.distribution.Dirichlet(paddle.to_tensor([1., 2., 3.]))

            print(dirichlet.entropy())
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [-1.24434423])
            print(dirichlet.prob(paddle.to_tensor([.3, .5, .6])))
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [10.80000114])

    """

    def __init__(self, concentration):
        if concentration.dim() < 1:
            raise ValueError(
                "`concentration` parameter must be at least one dimensional")

        self.concentration = concentration
        super(Dirichlet, self).__init__(concentration.shape[:-1],
                                        concentration.shape[-1:])

    @property
    def mean(self):
        """mean of Dirichelt distribution.

        Returns:
            mean value of distribution.
        """
        return self.concentration / self.concentration.sum(-1, keepdim=True)

    @property
    def variance(self):
        """variance of Dirichlet distribution.

        Returns:
            variance value of distribution.
        """
        concentration0 = self.concentration.sum(-1, keepdim=True)
        return (self.concentration * (concentration0 - self.concentration)) / (
            concentration0.pow(2) * (concentration0 + 1))

    def sample(self, shape=()):
        """sample from dirichlet distribution.

        Args:
            shape (Tensor, optional): sample shape. Defaults to empty tuple.
        """
        shape = shape if isinstance(shape, tuple) else tuple(shape)
        return _dirichlet(self.concentration.expand(self._extend_shape(shape)))

    def prob(self, value):
        """Probability density function(pdf) evaluated at value.

        Args:
            value (Tensor): value to be evaluated.

        Returns:
            pdf evaluated at value.
        """
        return paddle.exp(self.log_prob(value))

    def log_prob(self, value):
        """log of probability densitiy function.

        Args:
            value (Tensor): value to be evaluated.
        """
        return ((paddle.log(value) * (self.concentration - 1.0)
                 ).sum(-1) + paddle.lgamma(self.concentration.sum(-1)) -
                paddle.lgamma(self.concentration).sum(-1))

    def entropy(self):
        """entropy of Dirichlet distribution.

        Returns:
            entropy of distribution.
        """
        concentration0 = self.concentration.sum(-1)
        k = self.concentration.shape[-1]
        return (paddle.lgamma(self.concentration).sum(-1) -
                paddle.lgamma(concentration0) -
                (k - concentration0) * paddle.digamma(concentration0) - (
                    (self.concentration - 1.0
                     ) * paddle.digamma(self.concentration)).sum(-1))

    @property
    def _natural_parameters(self):
        return (self.concentration, )

    def _log_normalizer(self, x):
        return x.lgamma().sum(-1) - paddle.lgamma(x.sum(-1))


def _dirichlet(concentration, name=None):
    raise NotImplementedError


#     op_type = 'dirichlet'

#     check_variable_and_dtype(concentration, 'concentration',
#                              ['float32', 'float64'], op_type)

#     if in_dygraph_mode():
#         return paddle._C_ops.dirichlet(concentration)

#     else:
#         helper = LayerHelper(op_type, **locals())
#         out = helper.create_variable_for_type_inference(
#             dtype=concentration.dtype)
#         helper.append_op(
#             type=op_type,
#             inputs={"Alpha": concentration},
#             outputs={'Out': out},
#             attrs={})
#         return out