search_compute.h 6.2 KB
Newer Older
A
Aurelius84 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
Wilber 已提交
17 18
#if !defined(PADDLE_WITH_ARM) && !defined(PADDLE_WITH_SW) && \
    !defined(PADDLE_WITH_MIPS)
A
Aurelius84 已提交
19
#include <immintrin.h>
20
#endif
A
Aurelius84 已提交
21 22 23 24
#include <cfloat>
#include <cmath>
#include <cstring>

25 26
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
A
Aurelius84 已提交
27 28 29 30 31 32 33 34 35

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

template <typename DeviceContext, typename T>
36
void call_gemm(const phi::funcs::BlasT<DeviceContext, T>& blas,
37 38 39 40 41 42 43 44 45 46
               const CBLAS_TRANSPOSE TransA,
               const CBLAS_TRANSPOSE TransB,
               const int M,
               const int N,
               const int K,
               const T alpha,
               const T* A,
               const T* B,
               const T beta,
               T* C) {
A
Aurelius84 已提交
47 48 49 50 51 52 53
  int lda = (TransA == CblasNoTrans) ? K : M;
  int ldb = (TransB == CblasNoTrans) ? N : K;
  blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N);
}

template <typename T>
void call_gemm(const framework::ExecutionContext& ctx,
54 55 56 57 58 59 60 61 62 63
               const CBLAS_TRANSPOSE TransA,
               const CBLAS_TRANSPOSE TransB,
               const int M,
               const int N,
               const int K,
               const T alpha,
               const T* A,
               const T* B,
               const T beta,
               T* C) {
A
Aurelius84 已提交
64 65
  int lda = (TransA == CblasNoTrans) ? K : M;
  int ldb = (TransB == CblasNoTrans) ? N : K;
L
Leo Chen 已提交
66
  auto blas = phi::funcs::GetBlas<phi::CPUContext, T>(ctx);
A
Aurelius84 已提交
67 68 69 70
  blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N);
}

template <typename DeviceContext, typename T>
71
void call_gemm_with_lda(const phi::funcs::BlasT<DeviceContext, T>& blas,
A
Aurelius84 已提交
72
                        const CBLAS_TRANSPOSE TransA,
73 74 75 76 77 78 79 80 81 82
                        const CBLAS_TRANSPOSE TransB,
                        const int M,
                        const int N,
                        const int K,
                        const T alpha,
                        const T* A,
                        const T* B,
                        const T beta,
                        T* C,
                        int lda) {
A
Aurelius84 已提交
83 84 85 86 87 88 89 90
  int ldb = (TransB == CblasNoTrans) ? N : K;

  blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N);
}

template <typename T>
void call_gemm_batched(const framework::ExecutionContext& ctx,
                       const CBLAS_TRANSPOSE TransA,
91 92 93 94 95 96 97 98 99 100
                       const CBLAS_TRANSPOSE TransB,
                       const int M,
                       const int N,
                       const int K,
                       const T alpha,
                       const T** A,
                       const T** B,
                       const T beta,
                       T** C,
                       const int batch) {
A
Aurelius84 已提交
101 102 103 104 105
  for (int i = 0; i < batch; ++i) {
    call_gemm(ctx, TransA, TransB, M, N, K, alpha, A[i], B[i], beta, C[i]);
  }
}

W
Wilber 已提交
106 107
#if !defined(PADDLE_WITH_ARM) && !defined(PADDLE_WITH_SW) && \
    !defined(PADDLE_WITH_MIPS)
108

A
Aurelius84 已提交
109 110 111 112 113 114 115 116 117 118 119
#define __m256x __m256

static const unsigned int AVX_STEP_SIZE = 8;
static const unsigned int AVX_CUT_LEN_MASK = 7U;

#define _mm256_mul_px _mm256_mul_ps
#define _mm256_add_px _mm256_add_ps
#define _mm256_load_px _mm256_loadu_ps
#define _mm256_store_px _mm256_storeu_ps
#define _mm256_broadcast_sx _mm256_broadcast_ss

120
#define __m128x __m128
121

122 123 124 125 126 127 128 129 130
static const unsigned int SSE_STEP_SIZE = 2;
static const unsigned int SSE_CUT_LEN_MASK = 1U;

#define _mm_add_px _mm_add_ps
#define _mm_mul_px _mm_mul_ps
#define _mm_load_px _mm_loadu_ps
#define _mm_store_px _mm_storeu_ps
#define _mm_load1_px _mm_load1_ps

131 132
#endif

133 134
template <typename T>
inline void axpy(const T* x, T* y, size_t len, const T alpha) {
A
Aurelius84 已提交
135 136 137
  unsigned int jjj, lll;
  jjj = lll = 0;

138
#ifdef PADDLE_WITH_AVX
A
Aurelius84 已提交
139 140 141 142 143 144 145 146
  lll = len & ~AVX_CUT_LEN_MASK;
  __m256x mm_alpha = _mm256_broadcast_sx(&alpha);
  for (jjj = 0; jjj < lll; jjj += AVX_STEP_SIZE) {
    _mm256_store_px(
        y + jjj,
        _mm256_add_px(_mm256_load_px(y + jjj),
                      _mm256_mul_px(mm_alpha, _mm256_load_px(x + jjj))));
  }
W
Wilber 已提交
147 148
#elif defined(PADDLE_WITH_ARM) || defined(PADDLE_WITH_SW) || \
    defined(PADDLE_WITH_MIPS)
149
  PADDLE_THROW(platform::errors::Unimplemented("axpy is not supported"));
150 151 152 153 154 155 156
#else
  lll = len & ~SSE_CUT_LEN_MASK;
  __m128x mm_alpha = _mm_load1_px(&alpha);
  for (jjj = 0; jjj < lll; jjj += SSE_STEP_SIZE) {
    _mm_store_px(y + jjj,
                 _mm_add_px(_mm_load_px(y + jjj),
                            _mm_mul_px(mm_alpha, _mm_load_px(x + jjj))));
A
Aurelius84 已提交
157 158
  }

159
#endif
160 161 162 163 164 165

  for (; jjj < len; jjj++) {
    y[jjj] += alpha * x[jjj];
  }
}

166 167
template <typename T>
inline void axpy_noadd(const T* x, T* y, size_t len, const T alpha) {
A
Aurelius84 已提交
168 169 170
  unsigned int jjj, lll;
  jjj = lll = 0;

171
#ifdef PADDLE_WITH_AVX
A
Aurelius84 已提交
172 173 174 175 176
  lll = len & ~AVX_CUT_LEN_MASK;
  __m256x mm_alpha = _mm256_broadcast_sx(&alpha);
  for (jjj = 0; jjj < lll; jjj += AVX_STEP_SIZE) {
    _mm256_store_px(y + jjj, _mm256_mul_px(mm_alpha, _mm256_load_px(x + jjj)));
  }
W
Wilber 已提交
177 178
#elif defined(PADDLE_WITH_ARM) || defined(PADDLE_WITH_SW) || \
    defined(PADDLE_WITH_MIPS)
179
  PADDLE_THROW(platform::errors::Unimplemented("axpy_noadd is not supported"));
180 181 182 183 184 185 186 187
#else
  lll = len & ~SSE_CUT_LEN_MASK;
  __m128x mm_alpha = _mm_load1_px(&alpha);
  for (jjj = 0; jjj < lll; jjj += SSE_STEP_SIZE) {
    _mm_store_px(y + jjj, _mm_mul_px(mm_alpha, _mm_load_px(x + jjj)));
  }

#endif
A
Aurelius84 已提交
188 189 190 191 192

  for (; jjj < len; jjj++) {
    y[jjj] = alpha * x[jjj];
  }
}
193

194 195 196
inline void axpy_noadd(const int8_t* x,
                       int8_t* y,
                       size_t len,
197
                       const float alpha) {
198
  PADDLE_THROW(platform::errors::Unimplemented(
199
      "int8_t input of axpy_noadd is not supported"));
200
}
A
Aurelius84 已提交
201

A
Aurelius84 已提交
202 203
}  // namespace operators
}  // namespace paddle