test_run_program_op.py 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
17

18 19
import numpy as np

20
import paddle
21
from paddle import _legacy_C_ops, fluid
22
from paddle.fluid import core, framework
23
from paddle.fluid.dygraph.base import switch_to_static_graph
24

25 26
paddle.enable_static()

27 28 29 30 31 32 33 34 35 36 37 38

@contextlib.contextmanager
def program_scope_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            with fluid.unique_name.guard():
                yield


39 40 41 42
@switch_to_static_graph
def _add_build_strategy_for(input_program, start_op_index, end_op_index):
    compiled_program = paddle.static.CompiledProgram(
        core.Graph(input_program.desc, start_op_index, end_op_index),
43 44 45 46 47
        build_strategy=paddle.static.BuildStrategy(),
    )
    compiled_program._compile(
        core.Scope(), paddle.framework._current_expected_place()
    )
48 49 50 51 52 53 54 55 56 57
    ir_graph = paddle.fluid.framework.IrGraph(compiled_program._graph)
    builded_program = ir_graph.to_program()
    return builded_program


@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
58
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
59 60 61 62 63
    ]
    prog._sync_with_cpp()
    return prog


64
# NOTE: Because RunProgramOp has a special output of type std::vector<Scope *>,
65 66 67 68 69 70 71 72 73
# the OpTest cannot be used in RunProgramOp. The variable type cannot be specified
# when creating output variables in OpTest, default type is LoDTensor
# NOTE: the gradient test method in OpTest also cannot be used for RunProgramOp,
# because it hold BlockDesc type attr, OperatorFactory can't parse this attr type
# when create Operator, so here compare gradients with static graph
# NOTE: Here rewrite a simple unittest framework for RunProgramOp
class RunProgramOpTest(unittest.TestCase):
    def build_model(self):
        raise NotImplementedError(
74 75
            "RunProgramOp test should implement build_model"
        )
76 77 78 79 80 81

    def check_output(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
82
            # TODO: RunProgramOp is not recommended for use in static graph mode now
83 84 85 86 87 88 89 90
            self.expect_outs = self.run_static_model(place, is_test=True)
            self.check_output_with_place(place)

    def check_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
91
            # TODO: RunProgramOp is not recommended for use in static graph mode now
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
            self.expect_grads = self.run_static_model(place, is_test=False)
            self.check_grad_with_place(place)

    def run_static_model(self, place, is_test=True):
        with program_scope_guard():
            startup_program = fluid.default_startup_program()
            main_program = fluid.default_main_program()

            self.build_model()

            exe = fluid.Executor(place)
            exe.run(startup_program)

            if is_test:
                fetch_list = self.output_names['Out']
            else:
                fetch_list = self.get_param_grad_names()

110 111 112
            outs = exe.run(
                main_program, feed=self.inputs['X'], fetch_list=fetch_list
            )
113 114 115 116 117 118 119
            return outs

    def get_program_desc(self):
        with program_scope_guard():
            fwd_op_num = self.build_model()
            return fluid.default_main_program().desc, fwd_op_num

120 121 122
    def get_forward_backward_program_desc(
        self, whole_program_desc, forward_op_num, output_num
    ):
123 124 125
        program = _build_program_by_desc(whole_program_desc)
        forward_program = _add_build_strategy_for(program, 0, forward_op_num)
        backward_program = _add_build_strategy_for(
126
            program,
127
            forward_op_num + output_num,
128 129
            program.desc.block(0).op_size(),
        )
130 131
        return forward_program.desc, backward_program.desc

132
    def prepare_attrs(self):
133 134
        return [
            'global_block',
135 136 137 138 139 140
            self.program_desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self.fwd_op_num,
            'program_id',
141
            paddle.utils._hash_with_id(self.program_desc, self),
142
        ]
143 144 145 146 147 148 149 150 151 152 153 154

    def get_param_grad_names(self):
        grad_names = []
        for var_name in self.inputs['Params']:
            grad_names.append(var_name + core.grad_var_suffix())
        return grad_names

    def check_output_with_place(self, place):
        # Step 1. run op
        actual_outs = self.calc_dygraph_output(place)

        # Step 2. compare output
155
        for expect_v, actual_v in zip(self.expect_outs, actual_outs):
156 157 158
            np.testing.assert_allclose(
                expect_v, actual_v.numpy(), rtol=1e-05, atol=1e-05
            )
159 160 161 162 163 164

    def check_grad_with_place(self, place):
        # Step 1. calc grads
        actual_grads = self.calc_dygraph_grad(place)

        # Step 2. compare grads
165
        for expect_v, actual_v in zip(self.expect_grads, actual_grads):
166
            np.testing.assert_array_almost_equal(expect_v, actual_v)
167 168 169
            np.testing.assert_allclose(
                expect_v, actual_v, rtol=1e-05, atol=1e-05
            )
170 171 172

    def prepare_dygraph_input(self, place, return_param_list=False):
        def create_var_base(is_input, name, np_value, stop_gradient):
W
wanghuancoder 已提交
173 174 175
            var = core.eager.Tensor(
                value=np_value, name=name, place=place, zero_copy=True
            )
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            var.stop_gradient = stop_gradient
            return var

        # build inputs
        inputs = {}
        param_list = []
        inputs['X'] = []
        for name, np_value in self.inputs['X'].items():
            var = create_var_base(True, name, np_value, True)
            inputs['X'].append(var)
        inputs['Params'] = []
        for name, np_value in self.inputs['Params'].items():
            var = create_var_base(True, name, np_value, False)
            inputs['Params'].append(var)
            if return_param_list:
                param_list.append(var)

        if return_param_list:
            return inputs, param_list
        return inputs

    def prepare_dygraph_output(self):
        def create_var_base(is_input, name):
199
            var = framework._create_tensor(dtype=None, shape=None, name=name)
200 201 202 203 204 205 206 207 208
            var.stop_gradient = False
            return var

        # build outputs
        outputs = {}
        outputs['Out'] = []
        for name in self.output_names['Out']:
            outputs['Out'].append(create_var_base(False, name))

209
        outputs['OutScope'] = [core.Scope()]
210 211

        outputs['DOut'] = [create_var_base(False, "Fake_var")]
212 213 214
        return outputs

    def calc_dygraph_output(self, place):
215 216 217
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

218 219 220 221
        with fluid.dygraph.guard(place):
            inputs = self.prepare_dygraph_input(place)
            outputs = self.prepare_dygraph_output()

222 223 224 225 226 227 228
            (
                forward_program_desc,
                backward_program_desc,
            ) = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out'])
            )

229
            use_interpretorcore = True
230 231 232
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
233 234 235 236 237 238 239 240
                    (
                        'forward_global_block',
                        forward_program_desc.block(0),
                        'backward_global_block',
                        backward_program_desc.block(0),
                    )
                )

241 242 243 244 245 246
            self.attrs.extend(
                (
                    'param_grad_names',
                    [p.name + '@GRAD' for p in inputs['Params']],
                    'out_grad_names',
                    [out.name + '@GRAD' for out in outputs['Out']],
247 248
                    'x_grad_names',
                    [p.name + '@GRAD' for p in inputs['X']],
249 250 251
                )
            )

252 253 254 255 256 257 258 259 260
            _legacy_C_ops.run_program(
                inputs['X'],
                inputs['Params'],
                outputs['Out'],
                outputs['OutScope'],
                outputs['DOut'],
                None,
                *self.attrs
            )
261

262 263 264
            return outputs['Out']

    def calc_dygraph_grad(self, place):
265 266 267
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

268 269 270 271 272
        with fluid.dygraph.guard(place):
            # Step 1. run forward
            inputs, input_param_list = self.prepare_dygraph_input(place, True)
            outputs = self.prepare_dygraph_output()

273 274 275 276 277 278 279
            (
                forward_program_desc,
                backward_program_desc,
            ) = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out'])
            )

280
            use_interpretorcore = True
281 282 283
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
284 285 286 287 288 289 290 291
                    (
                        'forward_global_block',
                        forward_program_desc.block(0),
                        'backward_global_block',
                        backward_program_desc.block(0),
                    )
                )

292 293 294 295 296 297
            self.attrs.extend(
                (
                    'param_grad_names',
                    [p.name + '@GRAD' for p in inputs['Params']],
                    'out_grad_names',
                    [out.name + '@GRAD' for out in outputs['Out']],
298 299
                    'x_grad_names',
                    [p.name + '@GRAD' for p in inputs['X']],
300 301 302
                )
            )

303 304 305 306 307 308 309 310 311
            _legacy_C_ops.run_program(
                inputs['X'],
                inputs['Params'],
                outputs['Out'],
                outputs['OutScope'],
                outputs['DOut'],
                None,
                *self.attrs
            )
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

            for param in input_param_list:
                var_type = self._get_grad_vartype(param.name)
                if var_type is None:
                    continue
                param._set_grad_type(var_type)

            # Step 2. run backward
            # NOTE: in unittest, only support single output now
            actual_outs = outputs['Out']
            assert len(actual_outs) == 1
            actual_outs[0].backward()

            # Step 3. prepare grads
            grads = []
            for param in input_param_list:
                grad = param.gradient()
                grads.append(grad)
            return grads

    def _get_grad_vartype(self, name):
        assert self.program_desc is not None
        grad_name = name + core.grad_var_suffix()
335
        for i in range(self.program_desc.num_blocks()):
336
            block = self.program_desc.block(i)
337
            var_desc = block.find_var_recursive(grad_name.encode())
338 339 340 341 342 343 344 345 346
            return var_desc.type() if var_desc is not None else None


class TestRunProgramOpWithFC(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {
            'X': ['img'],
347
            'Params': ['weight_param', 'bias_param'],
348 349 350 351 352
        }
        self.output_names = {'Out': ['fc_0.tmp_2']}

        self.inputs = {
            'X': {
353 354 355
                self.input_names['X'][0]: np.random.random(
                    (32, 1, 28, 28)
                ).astype(self.dtype)
356 357
            },
            'Params': {
358 359 360 361 362 363 364
                self.input_names['Params'][0]: np.random.random(
                    (784, 10)
                ).astype(self.dtype),
                self.input_names['Params'][1]: np.random.random(
                    (32, 10)
                ).astype(self.dtype),
            },
365 366 367 368 369 370 371 372 373 374
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad()

    def build_model(self):
        # 1. simple model
375
        img = paddle.static.data(
376 377 378 379
            name=self.input_names['X'][0],
            shape=[None, 1, 28, 28],
            dtype='float32',
        )
380 381 382
        weight_attr = fluid.ParamAttr(
            name=self.input_names['Params'][0],
            learning_rate=0.5,
383
            initializer=paddle.nn.initializer.Assign(
384 385 386 387
                self.inputs['Params'][self.input_names['Params'][0]]
            ),
            trainable=True,
        )
388 389 390
        bias_attr = fluid.ParamAttr(
            name=self.input_names['Params'][1],
            learning_rate=0.5,
391
            initializer=paddle.nn.initializer.Assign(
392 393 394 395
                self.inputs['Params'][self.input_names['Params'][1]]
            ),
            trainable=True,
        )
C
Charles-hit 已提交
396 397
        pred = paddle.static.nn.fc(
            x=img,
398
            size=10,
C
Charles-hit 已提交
399
            weight_attr=weight_attr,
400
            bias_attr=bias_attr,
C
Charles-hit 已提交
401
            activation='relu',
402
        )
403 404 405 406 407 408 409 410 411 412 413 414 415
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[pred], inputs=[img])

        return fwd_op_num


class TestRunProgramOpWithEmbedding(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {'X': ['x'], 'Params': ['emb_weight']}
416
        self.output_names = {'Out': ['sum_0.tmp_0']}
417 418

        self.inputs = {
419
            'X': {'x': np.array([[1, 3, 0, 4, 7]]).astype("int64")},
420 421
            'Params': {
                'emb_weight': np.random.random(size=(10, 16)).astype("float32")
422
            },
423 424 425 426 427 428
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
429
        # NOTE: fecth not support SelectedRows, catnot compare
430 431 432 433 434
        # sparse gradients with staic mode, only run dygraph
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
435
            # TODO: RunProgramOp is not recommended for use in static graph mode now
436 437 438 439
            self.calc_dygraph_grad(place)

    def build_model(self):
        # 1. simple model
G
GGBond8488 已提交
440 441
        x = paddle.static.data(
            name=self.input_names['X'][0], shape=[-1, 5], dtype='int64'
442
        )
443
        emb = paddle.static.nn.embedding(
444 445 446 447 448
            input=x,
            size=[10, 16],
            param_attr=fluid.ParamAttr(
                name="emb_weight",
                learning_rate=10,
449
                initializer=paddle.nn.initializer.Assign(
450 451 452 453 454
                    self.inputs['Params'][self.input_names['Params'][0]]
                ),
            ),
            is_sparse=True,
        )
455
        y = paddle.sum(emb, axis=-1)
456 457 458 459 460 461 462 463
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[y], inputs=[x])

        return fwd_op_num


464 465
class Net(paddle.nn.Layer):
    def __init__(self):
466
        super().__init__()
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        self.fc1 = paddle.nn.Linear(10, 10)
        self.fc2 = paddle.nn.Linear(10, 1)

    def forward(self, x):
        out = self.fc1(x)
        out.stop_gradient = True
        out = self.fc2(out)
        return out


class TestParametersWithStopGradient(unittest.TestCase):
    def setUp(self):
        self.seed = 2021
        self.iter = 5

    def train(self, to_static):
        # prepare env
        paddle.seed(self.seed)

        net = Net()
        if to_static:
            net = paddle.jit.to_static(net)
        sgd = paddle.optimizer.SGD(0.01, parameters=net.parameters())

        for i in range(self.iter):
            x = paddle.rand([4, 10])
            out = net(x)
            loss = paddle.mean(out)

            loss.backward()
            sgd.minimize(loss)
            net.clear_gradients()

        return loss

    def test_stop_gradient(self):
        paddle.disable_static()

        dy_loss = self.train(to_static=False)
        st_loss = self.train(to_static=True)
507
        self.assertEqual(dy_loss, st_loss)
508 509 510 511

        paddle.enable_static()


512 513
if __name__ == "__main__":
    unittest.main()