run_program_op_node.h 31.1 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tensor_wrapper.h"
20
#include "paddle/fluid/framework/new_executor/interpretercore.h"
21
#include "paddle/fluid/framework/variable_helper.h"
22 23
#include "paddle/fluid/ir/transforms/pd_op_to_kernel_pass.h"
#include "paddle/fluid/ir_adaptor/translator/program_translator.h"
0
0x45f 已提交
24 25
#include "paddle/fluid/operators/run_program_op.h"
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/profiler/event_tracing.h"
27 28
#include "paddle/ir/core/program.h"
#include "paddle/ir/core/value.h"
0
0x45f 已提交
29

30 31
PHI_DECLARE_bool(enable_new_ir_in_executor);

0
0x45f 已提交
32
namespace details {
33
using Tensor = paddle::Tensor;
0
0x45f 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

static std::vector<Tensor> DereferenceTensors(
    const std::vector<Tensor *> &tensor_ptr) {
  std::vector<Tensor> res;
  for (auto *t : tensor_ptr) {
    res.emplace_back(*t);
  }
  return res;
}

static std::vector<std::string> GetTensorsName(const std::vector<Tensor> &ins) {
  std::vector<std::string> in_names;
  for (auto &in_t : ins) {
    in_names.emplace_back(in_t.name());
  }
  return in_names;
}

static std::vector<std::string> GetTensorsName(
    const std::vector<Tensor *> &ins) {
  std::vector<std::string> in_names;
  for (auto *in_t : ins) {
    in_names.emplace_back(in_t->name());
  }
  return in_names;
}

static void CheckInputVarStatus(const Tensor &tensor) {
62 63
  PADDLE_ENFORCE_EQ(tensor.defined() && tensor.is_dense_tensor(),
                    true,
64 65 66 67 68
                    paddle::platform::errors::InvalidArgument(
                        "The input tensor %s of "
                        "RunProgram(Grad)Op holds "
                        "wrong type. Expect type is DenseTensor.",
                        tensor.name()));
0
0x45f 已提交
69

70 71 72 73 74 75 76 77
  PADDLE_ENFORCE_EQ(
      static_cast<phi::DenseTensor *>(tensor.impl().get())->IsInitialized(),
      true,
      paddle::platform::errors::InvalidArgument(
          "The tensor in input tensor %s of "
          "RunProgram(Grad)Op "
          "is not initialized.",
          tensor.name()));
0
0x45f 已提交
78 79 80 81 82
}

static void CheckOutputVarStatus(const paddle::framework::Variable &src_var,
                                 const Tensor &dst_tensor) {
  auto name = dst_tensor.name();
83 84
  PADDLE_ENFORCE_EQ(dst_tensor.defined(),
                    true,
0
0x45f 已提交
85
                    paddle::platform::errors::InvalidArgument(
86
                        "dst_tensor `%s` shall be defined.", name));
0
0x45f 已提交
87

88
  if (dst_tensor.is_dense_tensor()) {
0
0x45f 已提交
89
    auto &src_tensor = src_var.Get<phi::DenseTensor>();
90 91
    PADDLE_ENFORCE_EQ(phi::DenseTensor::classof(&src_tensor),
                      true,
0
0x45f 已提交
92 93 94 95 96
                      paddle::platform::errors::InvalidArgument(
                          "The output tensor %s get from "
                          "RunProgram(Grad)Op's internal scope holds "
                          "wrong type. Expect type is DenseTensor",
                          name));
97
    PADDLE_ENFORCE_EQ(src_tensor.IsInitialized(),
98
                      true,
0
0x45f 已提交
99 100 101 102 103
                      paddle::platform::errors::InvalidArgument(
                          "The tensor in output tensor %s get from "
                          "RunProgram(Grad)Op's internal "
                          "scope is not initialized.",
                          name));
104
  } else if (dst_tensor.is_selected_rows()) {
0
0x45f 已提交
105
    auto &src_tensor = src_var.Get<phi::SelectedRows>();
106 107
    PADDLE_ENFORCE_EQ(phi::SelectedRows::classof(&src_tensor),
                      true,
0
0x45f 已提交
108 109 110 111 112
                      paddle::platform::errors::InvalidArgument(
                          "The output tensodfr %s get from "
                          "RunProgram(Grad)Op's internal scope holds "
                          "wrong type. Expect type is SelectedRows",
                          name));
113 114
    PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                      true,
0
0x45f 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                      paddle::platform::errors::InvalidArgument(
                          "The tensor in output tensor %s get from "
                          "RunProgram(Grad)Op's "
                          "internal scope is not initialized.",
                          name));

  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The RunProgram(Grad)Op only support output "
        "variable of type LoDTensor or SelectedRows",
        name));
  }
}

static void ShareTensorsIntoScope(const std::vector<Tensor> &tensors,
                                  paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto name = tensors[i].name();
133 134
    if (name == paddle::framework::kFakeVarName ||
        name == paddle::framework::kEmptyVarName) {
0
0x45f 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
      continue;
    }
    auto *var = scope->Var(name);
    CheckInputVarStatus(tensors[i]);
    // share tensor
    auto tensor_base = tensors[i].impl();
    if (phi::DenseTensor::classof(tensor_base.get())) {
      auto *dst_tensor = var->GetMutable<phi::DenseTensor>();
      auto t = std::dynamic_pointer_cast<phi::DenseTensor>(tensor_base);
      *dst_tensor = *t;
    } else if (phi::SelectedRows::classof(tensor_base.get())) {
      auto *dst_tensor = var->GetMutable<phi::SelectedRows>();
      auto t = std::dynamic_pointer_cast<phi::SelectedRows>(tensor_base);
      *dst_tensor = *t;
    }
  }
}

static void ShareTensorsFromScope(
    const std::vector<Tensor *> &tensors,
    const paddle::framework::BlockDesc &global_block,
    paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    // NOTE: In case of setting out_tmp.stop_gradient = True in model code, all
    // parameters before generating out_tmp have no @GRAD, it will raise error
    // because we can't find them in scope. So we skip sharing these vars or
    // var@GRAD if they don't appear in global block.
    auto &name = tensors[i]->name();
163 164
    if (name == paddle::framework::kEmptyVarName ||
        name == paddle::framework::kFakeVarName || !global_block.HasVar(name)) {
0
0x45f 已提交
165 166 167 168 169 170
      VLOG(2) << "find tensor name is " << name << ", skip it!";
      continue;
    }
    // NOTE: Here skip not found var is dangerous, if a bug is caused here,
    // the result is grad calculation error, which will be very hidden!
    auto *var = scope->FindVar(name);
171 172 173 174 175 176
    PADDLE_ENFORCE_NOT_NULL(
        var,
        paddle::platform::errors::NotFound("The output tensor %s is not in "
                                           "RunProgram(Grad)Op'"
                                           "s internal scope.",
                                           name));
0
0x45f 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    CheckOutputVarStatus(*var, *tensors[i]);
    // share tensor
    if (var->IsType<phi::DenseTensor>()) {
      auto &src_tensor = var->Get<phi::DenseTensor>();
      auto *dst_tensor = const_cast<phi::DenseTensor *>(
          dynamic_cast<const phi::DenseTensor *>(tensors[i]->impl().get()));
      VLOG(2) << "share " << name << " from scope";
      *dst_tensor = src_tensor;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto &src_tensor = var->Get<phi::SelectedRows>();
      auto *dst_tensor = const_cast<phi::SelectedRows *>(
          dynamic_cast<const phi::SelectedRows *>(tensors[i]->impl().get()));
      *dst_tensor = src_tensor;
    }
  }
}

194 195 196 197 198 199 200
static void ShareTensorsFromScopeWithPartialBlock(
    const std::vector<Tensor *> &tensors,
    const paddle::framework::BlockDesc &forward_global_block,
    const paddle::framework::BlockDesc &backward_global_block,
    paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &name = tensors[i]->name();
201 202
    if (name == paddle::framework::kEmptyVarName ||
        name == paddle::framework::kFakeVarName ||
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        (!forward_global_block.HasVar(name) &&
         !backward_global_block.HasVar(name))) {
      VLOG(2) << "find tensor name is " << name << ", skip it!";
      continue;
    }
    auto *var = scope->FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        paddle::platform::errors::NotFound("The output tensor %s is not in "
                                           "RunProgram(Grad)Op'"
                                           "s internal scope.",
                                           name));
    CheckOutputVarStatus(*var, *tensors[i]);
    // share tensor
    if (var->IsType<phi::DenseTensor>()) {
      auto &src_tensor = var->Get<phi::DenseTensor>();
      auto *dst_tensor = const_cast<phi::DenseTensor *>(
          dynamic_cast<const phi::DenseTensor *>(tensors[i]->impl().get()));
      VLOG(2) << "share " << name << " from scope";
      *dst_tensor = src_tensor;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto &src_tensor = var->Get<phi::SelectedRows>();
      auto *dst_tensor = const_cast<phi::SelectedRows *>(
          dynamic_cast<const phi::SelectedRows *>(tensors[i]->impl().get()));
      *dst_tensor = src_tensor;
    }
  }
}

static void BuildScopeByBlock(
    const paddle::framework::InterpreterCore &interpreter_core,
    const paddle::framework::BlockDesc &block,
    paddle::framework::Scope *scope) {
  for (auto &var_desc : block.AllVars()) {
    auto var_name = var_desc->Name();
    if (var_name == paddle::framework::kEmptyVarName) {
      continue;
    }
    if (!scope->FindLocalVar(var_name)) {
      auto *ptr = scope->Var(var_name);
      InitializeVariable(ptr, var_desc->GetType());
      VLOG(2) << "Initialize Block Variable " << var_name;
    }
  }
  auto &data_transfer_added_vars =
      interpreter_core.GetVariableScope()->DataTransferAddedVars();
  for (size_t i = 0; i < data_transfer_added_vars.size(); i++) {
    auto *ptr = scope->Var(data_transfer_added_vars[i].first);
    InitializeVariable(ptr,
                       static_cast<paddle::framework::proto::VarType::Type>(
                           data_transfer_added_vars[i].second));
    VLOG(2) << "Initialize Transfer Added Variable "
            << data_transfer_added_vars[i].first;
  }
}

259 260 261 262 263 264
static void GcScope(paddle::framework::Scope *scope) {
  std::deque<std::shared_ptr<paddle::memory::Allocation>> *garbages =
      new std::deque<std::shared_ptr<paddle::memory::Allocation>>();

  for (auto &var : scope->LocalVars()) {
    if (var != nullptr) {
265 266 267
      if (var->IsType<phi::DenseTensor>()) {
        garbages->emplace_back(
            var->GetMutable<phi::DenseTensor>()->MoveMemoryHolder());
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
      }
      if (var->IsType<phi::SelectedRows>()) {
        garbages->emplace_back(var->GetMutable<phi::SelectedRows>()
                                   ->mutable_value()
                                   ->MoveMemoryHolder());
      }
      if (var->IsType<paddle::framework::LoDTensorArray>()) {
        auto *lod_tensor_arr =
            var->GetMutable<paddle::framework::LoDTensorArray>();
        for (auto &t : *lod_tensor_arr) {
          garbages->emplace_back(t.MoveMemoryHolder());
        }
        lod_tensor_arr->clear();
      }
    }
  }
  delete garbages;  // free mem
}

0
0x45f 已提交
287 288 289
}  // namespace details

inline void RunProgramAPI(
290 291 292
    const std::vector<paddle::Tensor> &x,
    const std::vector<paddle::Tensor> &params,
    std::vector<paddle::Tensor *> &out,                   // NOLINT
0
0x45f 已提交
293
    std::vector<paddle::framework::Scope *> &step_scope,  // NOLINT
294
    std::vector<paddle::Tensor *> &dout,                  // NOLINT
295
    bool require_any_grad,
0
0x45f 已提交
296 297
    const paddle::framework::AttributeMap &attrs) {
  VLOG(2) << "RunProgramOpKernel Compute";
0
0x45f 已提交
298 299 300 301 302
  // In the original run_program OP, the default value of the is_test
  // attribute is false, we should check if there is is_test parameter
  // in attrs
  auto is_test = false;
  if (attrs.count("is_test")) {
R
Ruibiao Chen 已提交
303
    is_test = PADDLE_GET_CONST(bool, attrs.at("is_test"));
0
0x45f 已提交
304
  }
305
  int64_t program_id = PADDLE_GET_CONST(int64_t, attrs.at("program_id"));
306
  auto place = egr::Controller::Instance().GetExpectedPlace();
0
0x45f 已提交
307 308 309 310 311

  // NOTE(chenweihang): In order not to add new variable type, use vector
  // here. Originally, here can use scope directly.
  auto *out_scope_vec = &step_scope;
  PADDLE_ENFORCE_EQ(
312 313
      out_scope_vec->size(),
      1,
0
0x45f 已提交
314 315 316
      paddle::platform::errors::InvalidArgument(
          "The OutScope of RunProgramGradOp should only hold one scope."));

317
  VLOG(2) << "RunProgramOp use interpretercore to execute program.";
0
0x45f 已提交
318

319
  paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
0
0x45f 已提交
320

L
Leo Chen 已提交
321 322
  VLOG(4) << "global_inner_scope:" << global_inner_scope;

323 324
  auto input_names = details::GetTensorsName(x);
  auto output_names = details::GetTensorsName(out);
325
  auto param_names = details::GetTensorsName(params);
326
  auto dout_names = details::GetTensorsName(dout);
327

328 329 330 331 332 333 334
  if (VLOG_IS_ON(6)) {
    std::stringstream s;
    s << "input_names: ";
    for (auto name : input_names) {
      s << name << " ";
    }
    s << std::endl;
335 336 337 338 339
    s << "param_names: ";
    for (auto name : param_names) {
      s << name << " ";
    }
    s << std::endl;
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    s << "output_names: ";
    for (auto name : output_names) {
      s << name << " ";
    }
    s << std::endl;
    s << "dout_names: ";
    for (auto name : dout_names) {
      s << name << " ";
    }
    s << std::endl;
    VLOG(6) << s.str();
  }

  auto *forward_global_block = PADDLE_GET_CONST(
      paddle::framework::BlockDesc *, attrs.at("forward_global_block"));
  auto *backward_global_block = PADDLE_GET_CONST(
      paddle::framework::BlockDesc *, attrs.at("backward_global_block"));
  auto *forward_program = forward_global_block->Program();
  auto *backward_program = backward_global_block->Program();

  auto &interpretercore_info_cache =
      paddle::framework::InterpreterCoreInfoCache::Instance();
  std::shared_ptr<paddle::framework::InterpreterCore> interpreter_core =
      nullptr;
364 365
  if (!interpretercore_info_cache.Has(
          program_id, global_inner_scope, /*is_grad=*/false)) {
366 367 368 369 370 371 372 373 374 375 376
    paddle::platform::RecordEvent record_event(
        "create_new_interpretercore",
        paddle::platform::TracerEventType::UserDefined,
        1);
    VLOG(2) << "No interpretercore cahce, so create a new interpretercore "
               "for program: "
            << program_id;
    // Step 1. share input_vars & parameters into scope
    details::ShareTensorsIntoScope(x, global_inner_scope);
    details::ShareTensorsIntoScope(params, global_inner_scope);
    // Step 2. create new interpretercore
377 378 379 380

    if (FLAGS_enable_new_ir_in_executor) {
      // build new ir program
      auto ir_program = paddle::framework::ConstructFowardIrProgram(
381
          forward_global_block, backward_global_block, output_names, x, params);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
      interpreter_core =
          paddle::framework::CreateNewIRInterpreterCoreInfoToCache(
              std::move(ir_program),
              place,
              /*is_grad=*/false,
              program_id,
              global_inner_scope);
    } else {
      interpreter_core =
          paddle::framework::CreateProgramInterpreterCoreInfoToCache(
              *forward_program,
              place,
              /*is_grad=*/false,
              program_id,
              global_inner_scope);
    }
398 399 400 401
    // Step 3. get all eager gc vars
    std::set<std::string> skip_eager_delete_vars =
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet(
            *backward_program);
402

403 404 405 406 407 408 409 410 411
    // all out_vars are skip_eager_var
    skip_eager_delete_vars.insert(output_names.begin(), output_names.end());
    skip_eager_delete_vars.insert(dout_names.begin(), dout_names.end());
    // update interpretercore skip_gc_var
    interpreter_core->SetSkipGcVars(skip_eager_delete_vars);

    std::set<std::string> input_vars;
    input_vars.insert(input_names.begin(), input_names.end());
    interpreter_core->SetJitInputVars(input_vars);
412

413 414
    if (VLOG_IS_ON(6)) {
      std::stringstream s;
415 416
      s << "skip_eager_delete_vars: ";
      for (auto name : skip_eager_delete_vars) {
417 418 419 420 421
        s << name << " ";
      }
      VLOG(6) << s.str();
    }

422
    interpretercore_info_cache.UpdateSkipEagerDeleteVars(
423
        program_id, global_inner_scope, false, skip_eager_delete_vars);
424 425 426 427 428 429 430 431
    VLOG(2) << "Get skip GC vars size is: " << skip_eager_delete_vars.size();
  } else {
    paddle::platform::RecordEvent record_event(
        "get_interpretercore_cahce",
        paddle::platform::TracerEventType::UserDefined,
        1);
    VLOG(2) << "Get interpretercore cahce by program:" << program_id;
    // Step 1. get cache interpretercore
432 433
    auto &cached_value = interpretercore_info_cache.GetMutable(
        program_id, global_inner_scope, /*is_grad=*/false);
434 435 436 437 438 439 440 441 442
    interpreter_core = cached_value.core_;
    // Step 2. update scope for cache interpretercore
    details::ShareTensorsIntoScope(x, global_inner_scope);
    details::ShareTensorsIntoScope(params, global_inner_scope);
    if (interpreter_core->GetVariableScope()->GetMutableScope() !=
        global_inner_scope) {
      details::BuildScopeByBlock(
          *interpreter_core.get(), *forward_global_block, global_inner_scope);
      interpreter_core->reset_scope(global_inner_scope);
443
    }
444
  }
445

446 447 448 449 450 451 452 453
  // interpretercore run
  if (forward_global_block->OpSize() > 0) {
    paddle::platform::RecordEvent record_event(
        "interpreter_core_run",
        paddle::platform::TracerEventType::UserDefined,
        1);
    interpreter_core->Run({});
  }
454

455 456 457 458 459 460 461 462 463 464
  {
    paddle::platform::RecordEvent record_event(
        "fetch_and_gc", paddle::platform::TracerEventType::UserDefined, 1);
    // Get Output
    details::ShareTensorsFromScopeWithPartialBlock(
        out, *forward_global_block, *backward_global_block, global_inner_scope);
    details::ShareTensorsFromScopeWithPartialBlock(dout,
                                                   *forward_global_block,
                                                   *backward_global_block,
                                                   global_inner_scope);
465 466

    VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front());
467

468 469 470 471
    if (is_test || !require_any_grad) {
      VLOG(4) << "don't require any grad, set this scope can reused";
      VLOG(4) << "is_test: " << is_test
              << ", require_any_grad: " << require_any_grad;
C
co63oc 已提交
472
      global_inner_scope->SetCanReused(true);
473 474 475
      details::GcScope(global_inner_scope);
    } else {
      VLOG(4) << "not test, set this scope can not reused";
C
co63oc 已提交
476
      global_inner_scope->SetCanReused(false);
477
    }
478 479
  }

480
#ifdef PADDLE_WITH_DNNL
481
  if (FLAGS_use_mkldnn) paddle::platform::DontClearMKLDNNCache(place);
482
#endif
0
0x45f 已提交
483 484 485
}

inline void RunProgramGradAPI(
486
    const std::vector<paddle::Tensor> &out_grad,
0
0x45f 已提交
487 488
    const std::vector<paddle::framework::Scope *> &step_scope,  // NOLINT
    const paddle::framework::AttributeMap &attrs,
489 490
    std::vector<paddle::Tensor *> &x_grad,      // NOLINT
    std::vector<paddle::Tensor *> &params_grad  // NOLINT
491
) {
0
0x45f 已提交
492 493 494 495
  // if all output vars are set to stop_gradient, grad op no need to executed
  if (x_grad.empty() && params_grad.empty()) return;
  auto *out_scope_vec = &step_scope;
  PADDLE_ENFORCE_EQ(
496 497
      out_scope_vec->size(),
      1,
0
0x45f 已提交
498 499
      paddle::platform::errors::InvalidArgument(
          "The OutScope of RunProgramGradOp should only hold one scope."));
500 501 502
  paddle::framework::Scope *global_inner_scope = out_scope_vec->front();

  int64_t program_id = PADDLE_GET_CONST(int64_t, attrs.at("program_id"));
0
0x45f 已提交
503

504
  auto place = egr::Controller::Instance().GetExpectedPlace();
505 506
  VLOG(2) << "RunProgramGradOp use interpretercore to execute program.";

L
Leo Chen 已提交
507
  VLOG(4) << "global_inner_scope:" << global_inner_scope;
508 509 510 511 512 513 514 515 516 517 518 519

  auto *forward_global_block = PADDLE_GET_CONST(
      paddle::framework::BlockDesc *, attrs.at("forward_global_block"));
  auto *backward_global_block = PADDLE_GET_CONST(
      paddle::framework::BlockDesc *, attrs.at("backward_global_block"));
  auto *backward_program = backward_global_block->Program();

  auto out_grad_names = details::GetTensorsName(out_grad);
  auto &interpretercore_info_cache =
      paddle::framework::InterpreterCoreInfoCache::Instance();
  std::shared_ptr<paddle::framework::InterpreterCore> interpreter_core =
      nullptr;
520 521
  if (!interpretercore_info_cache.Has(
          program_id, global_inner_scope, /*is_grad=*/true)) {
522 523 524 525 526 527
    paddle::platform::RecordEvent record_event(
        "create_new_interpretercore",
        paddle::platform::TracerEventType::UserDefined,
        1);
    VLOG(2) << "No interpretercore cahce, so create a new interpretercore";
    details::ShareTensorsIntoScope(out_grad, global_inner_scope);
528 529

    if (FLAGS_enable_new_ir_in_executor) {
530 531 532 533 534 535
      auto res =
          paddle::framework::ConstructBackwardIrProgram(backward_global_block,
                                                        out_grad,
                                                        x_grad,
                                                        params_grad,
                                                        global_inner_scope);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

      interpreter_core =
          paddle::framework::CreateNewIRInterpreterCoreInfoToCache(
              std::move(res),
              place,
              /*is_grad=*/true,
              program_id,
              global_inner_scope);
    } else {
      interpreter_core =
          paddle::framework::CreateProgramInterpreterCoreInfoToCache(
              *backward_program,
              place,
              /*is_grad=*/true,
              program_id,
              global_inner_scope);
    }
553 554 555 556

    // share threadpool
    // NOTE(zhiqiu): this only works interpreter_core is executed strictly
    // after the related fwd_interpreter_core.
557
    if (interpretercore_info_cache.Has(program_id, global_inner_scope, false)) {
558
      auto fwd_interpreter_core =
559 560
          interpretercore_info_cache
              .GetMutable(program_id, global_inner_scope, /*is_grad=*/false)
561 562 563 564
              .core_;
      interpreter_core->ShareWorkQueueFrom(fwd_interpreter_core);
      VLOG(4) << "Share workqueue from " << fwd_interpreter_core.get() << " to "
              << interpreter_core.get();
565
    }
566

567 568 569 570
    std::vector<std::string> x_grad_names;
    std::vector<std::string> param_grad_names;
    if (!x_grad.empty()) {
      x_grad_names = details::GetTensorsName(x_grad);
571
    }
572 573
    if (!params_grad.empty()) {
      param_grad_names = details::GetTensorsName(params_grad);
574
    }
575 576 577 578 579 580 581 582 583
    // get all eager gc vars
    std::set<std::string> skip_eager_delete_vars;
    // all out_vars are skip_eager_var
    skip_eager_delete_vars.insert(x_grad_names.begin(), x_grad_names.end());
    // initialize skip gc vars by forward_program and backward_program
    paddle::framework::details::AppendSkipDeletionVars(param_grad_names,
                                                       &skip_eager_delete_vars);
    interpreter_core->SetSkipGcVars(skip_eager_delete_vars);
    interpretercore_info_cache.UpdateSkipEagerDeleteVars(
584 585 586 587
        program_id,
        global_inner_scope,
        /*is_grad=*/true,
        skip_eager_delete_vars);
588
    VLOG(2) << "Get skip GC vars size is: " << skip_eager_delete_vars.size();
589
  } else {
590 591 592 593 594
    paddle::platform::RecordEvent record_event(
        "get_interpretercore_cahce",
        paddle::platform::TracerEventType::UserDefined,
        1);
    VLOG(2) << "Get interpretercore cahce by program:" << program_id;
595 596
    auto &cached_value = interpretercore_info_cache.GetMutable(
        program_id, global_inner_scope, /*is_grad=*/true);
597 598 599 600 601 602 603 604 605
    interpreter_core = cached_value.core_;

    // update scope
    details::ShareTensorsIntoScope(out_grad, global_inner_scope);
    if (interpreter_core->GetVariableScope()->GetMutableScope() !=
        global_inner_scope) {
      details::BuildScopeByBlock(
          *interpreter_core.get(), *backward_global_block, global_inner_scope);
      interpreter_core->reset_scope(global_inner_scope);
0
0x45f 已提交
606
    }
607
  }
0
0x45f 已提交
608

609 610 611 612 613 614 615 616 617
  if (backward_global_block->OpSize() > 0) {
    paddle::platform::RecordEvent record_event(
        "interpreter_core_run",
        paddle::platform::TracerEventType::UserDefined,
        1);
    // Debug info: scope info when run end
    VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front());
    interpreter_core->Run({});
  }
0
0x45f 已提交
618

619 620 621 622 623 624 625 626 627 628 629 630 631
  {
    paddle::platform::RecordEvent record_event(
        "fetch_and_gc", paddle::platform::TracerEventType::UserDefined, 1);
    // Step 4. get outputs
    details::ShareTensorsFromScopeWithPartialBlock(x_grad,
                                                   *forward_global_block,
                                                   *backward_global_block,
                                                   global_inner_scope);
    details::ShareTensorsFromScopeWithPartialBlock(params_grad,
                                                   *forward_global_block,
                                                   *backward_global_block,
                                                   global_inner_scope);
    VLOG(4) << "after backward gc all vars";
C
co63oc 已提交
632
    global_inner_scope->SetCanReused(true);
633
    details::GcScope(global_inner_scope);
0
0x45f 已提交
634 635 636 637 638 639 640 641
  }
}

class GradNodeRunProgram : public egr::GradNodeBase {
 public:
  GradNodeRunProgram(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}

642
  ~GradNodeRunProgram() {
L
Leo Chen 已提交
643 644 645 646 647 648
    if (!executed_) {
      auto *out_scope_vec = &step_scope_;
      VLOG(4) << "~GradNodeRunProgram";
      // Normally out_scope_vec.size() == 1. for safty, we add for-loop here.
      for (size_t i = 0; i < out_scope_vec->size(); ++i) {
        paddle::framework::Scope *global_inner_scope = out_scope_vec->at(i);
C
co63oc 已提交
649
        global_inner_scope->SetCanReused(true);
L
Leo Chen 已提交
650
        details::GcScope(global_inner_scope);
C
co63oc 已提交
651
        VLOG(4) << "global_inner_scope SetCanReused";
L
Leo Chen 已提交
652
      }
653 654
    }
  }
0
0x45f 已提交
655
  // Functor: perform backward computations
656
  virtual paddle::small_vector<std::vector<paddle::Tensor>,
657
                               egr::kSlotSmallVectorSize>
658
  operator()(paddle::small_vector<std::vector<paddle::Tensor>,
659
                                  egr::kSlotSmallVectorSize> &grads,  // NOLINT
660 661
             bool create_graph UNUSED,
             bool is_new_grad UNUSED) override {
0
0x45f 已提交
662
    VLOG(3) << "Running Eager Backward Node: GradNodeRunProgram";
663
    paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
664
        hooked_grads = GradNodeRunProgram::ApplyGradientHooks(grads);
665 666
    PADDLE_ENFORCE_EQ(hooked_grads.size(),
                      1,
667 668 669
                      paddle::platform::errors::InvalidArgument(
                          "The hooked_grads.size() of RunProgramGradOp should "
                          "be equal to 1."));
0
0x45f 已提交
670

671 672 673 674
    std::vector<paddle::Tensor> x_grad;
    std::vector<paddle::Tensor> params_grad;
    std::vector<paddle::Tensor *> x_grad_ptr;
    std::vector<paddle::Tensor *> params_grad_ptr;
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    {
      paddle::platform::RecordEvent record_event(
          "construct_grad_tensor",
          paddle::platform::TracerEventType::UserDefined,
          1);

      egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&hooked_grads[0],
                                                         this->InputMeta()[0]);
      VLOG(3) << "hooked_grads[0].size() : " << hooked_grads[0].size();
      ConstructXGradTensors(x_, &x_grad);
      ConstructParamGradTensors(params_, &params_grad);
      for (auto &i : x_grad) {
        x_grad_ptr.emplace_back(&i);
      }
      for (auto &i : params_grad) {
        if (i.defined()) {
          params_grad_ptr.emplace_back(&i);
        }
0
0x45f 已提交
693
      }
0
0x45f 已提交
694 695
    }

696 697
    auto out_grad_names =
        PADDLE_GET_CONST(std::vector<std::string>, attrs_.at("out_grad_names"));
698
    PADDLE_ENFORCE_EQ(hooked_grads[0].size(),
699
                      out_grad_names.size(),
700 701
                      paddle::platform::errors::InvalidArgument(
                          "The hooked_grads[0].size() and "
702 703 704
                          "out_grad_names.size() should be equal."));
    for (size_t i = 0; i < out_grad_names.size(); ++i) {
      hooked_grads[0][i].set_name(out_grad_names[i]);
0
0x45f 已提交
705
    }
706 707
    RunProgramGradAPI(
        hooked_grads[0], step_scope_, attrs_, x_grad_ptr, params_grad_ptr);
0
0x45f 已提交
708
    VLOG(3) << "End Eager Backward Node: GradNodeRunProgram";
L
Leo Chen 已提交
709 710

    executed_ = true;
0
0x45f 已提交
711 712 713
    return {x_grad, params_grad};
  }

714 715 716 717 718
  void ClearTensorWrappers() override {
    x_.clear();
    params_.clear();
    SetIsTensorWrappersCleared(true);
  }
719

0
0x45f 已提交
720 721 722 723 724
  // SetAttrMap
  void SetAttrMap(const paddle::framework::AttributeMap &attrs) {
    attrs_ = attrs;
  }

725
  void SetFwdX(const std::vector<paddle::Tensor> &tensors) { x_ = tensors; }
0
0x45f 已提交
726

727
  void SetFwdParams(const std::vector<paddle::Tensor> &tensors) {
0
0x45f 已提交
728 729 730 731 732 733 734 735
    params_ = tensors;
  }

  void SetStepScope(const std::vector<paddle::framework::Scope *> &scopes) {
    step_scope_ = scopes;
  }

 protected:
736 737
  void ConstructXGradTensors(const std::vector<paddle::Tensor> &x,
                             std::vector<paddle::Tensor> *x_grad) {
738 739 740 741 742 743 744 745 746 747 748
    auto x_grad_names =
        PADDLE_GET_CONST(std::vector<std::string>, attrs_.at("x_grad_names"));
    PADDLE_ENFORCE_EQ(
        x.size(),
        x_grad_names.size(),
        paddle::platform::errors::InvalidArgument(
            "The x.size() and x_grad_names.size() should be equal. "
            "But received x.size() = %d, x_grad_names.size() = %d",
            x.size(),
            x_grad_names.size()));

0
0x45f 已提交
749 750
    // TODO(dev): Need an elegant way to determine inforamtion of grad_tensor,
    // such as: name, tensor type(DenseTensor or SelectedRows).
751 752
    for (size_t i = 0; i < x.size(); i++) {
      if (x[i].is_dense_tensor()) {
753
        x_grad->emplace_back(std::make_shared<phi::DenseTensor>());
754
      } else if (x[i].is_selected_rows()) {
755
        x_grad->emplace_back(std::make_shared<phi::SelectedRows>());
756
      }
757
      x_grad->back().set_name(x_grad_names[i]);
0
0x45f 已提交
758 759 760
    }
  }

761 762
  void ConstructParamGradTensors(const std::vector<paddle::Tensor> &params,
                                 std::vector<paddle::Tensor> *param_grads) {
763 764 765 766 767 768 769 770 771 772 773
    auto param_grad_names = PADDLE_GET_CONST(std::vector<std::string>,
                                             attrs_.at("param_grad_names"));
    PADDLE_ENFORCE_EQ(params.size(),
                      param_grad_names.size(),
                      paddle::platform::errors::InvalidArgument(
                          "The param.size() and "
                          "param_grad_names.size() should be equal."));

    for (size_t i = 0; i < params.size(); ++i) {
      auto &p = params[i];
      auto &p_grad = egr::EagerUtils::unsafe_autograd_meta(p)->Grad();
774 775 776
      // In eager mode, the number of param_grad should be the same as
      // param, so here an empty Tensor is added for the param with
      // stop_gradient=True
777 778 779 780 781 782
      if (!p_grad.defined()) {
        param_grads->emplace_back();
      } else if (p_grad.is_dense_tensor()) {
        param_grads->emplace_back(std::make_shared<phi::DenseTensor>());
      } else if (p_grad.is_selected_rows()) {
        param_grads->emplace_back(std::make_shared<phi::SelectedRows>());
783
      }
784
      param_grads->back().set_name(param_grad_names[i]);
0
0x45f 已提交
785 786 787
    }
  }

788 789 790 791 792 793
  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node =
        std::shared_ptr<GradNodeRunProgram>(new GradNodeRunProgram(*this));
    return copied_node;
  }

0
0x45f 已提交
794 795
 private:
  // TensorWrappers
796 797
  std::vector<paddle::Tensor> x_;
  std::vector<paddle::Tensor> params_;
0
0x45f 已提交
798 799 800 801
  std::vector<paddle::framework::Scope *> step_scope_;

  // Attribute Map
  paddle::framework::AttributeMap attrs_;
L
Leo Chen 已提交
802 803

  bool executed_{false};
0
0x45f 已提交
804
};