onnxruntime_predictor.cc 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/onnxruntime_predictor.h"

#include <glog/logging.h>

#include <algorithm>
#include <fstream>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>

#include "paddle/fluid//platform/device/gpu/gpu_types.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/version.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/utils/io_utils.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"

namespace paddle {

44
paddle_infer::DataType ConvertONNXType(ONNXTensorElementDataType type) {
45 46
  switch (type) {
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT:
47 48 49
      return paddle_infer::DataType::FLOAT32;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16:
      return paddle_infer::DataType::FLOAT16;
50
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8:
51
      return paddle_infer::DataType::INT8;
52
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32:
53
      return paddle_infer::DataType::INT32;
54
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64:
55
      return paddle_infer::DataType::INT64;
56
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8:
57
      return paddle_infer::DataType::UINT8;
58 59
    default:
      LOG(ERROR) << "unsupported ONNX Tensor Type: " << static_cast<int>(type);
60
      return paddle_infer::DataType::FLOAT32;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  }
}

bool CheckConvertToONNX(const AnalysisConfig &config) {
  if (!config.model_dir().empty()) {
    LOG(ERROR) << "Paddle2ONNX not support model_dir config";
    // TODO(heliqi jiangjiajun): Paddle2ONNX not support
    // config.model_dir() + "/__model__"
    // config.model_dir() + var_name
    return false;
  } else if (config.prog_file().empty() || config.params_file().empty()) {
    LOG(ERROR) << string::Sprintf(
        "not valid model path '%s' or program path '%s' or params path '%s'.",
        config.model_dir(), config.prog_file(), config.params_file());
    return false;
  }
77 78 79 80 81 82 83 84
  if (config.model_from_memory()) {
    return paddle2onnx::IsExportable(
        config.prog_file().data(), config.prog_file().size(),
        config.params_file().data(), config.params_file().size());
  } else {
    return paddle2onnx::IsExportable(config.prog_file().c_str(),
                                     config.params_file().c_str());
  }
85 86 87 88 89
}

bool ONNXRuntimePredictor::Init() {
  VLOG(3) << "ONNXRuntime Predictor::init()";

H
heliqi 已提交
90
  // Now ONNXRuntime only support CPU
91
  const char *device_name = config_.use_gpu() ? "Cuda" : "Cpu";
92 93 94 95 96 97
  if (config_.use_gpu()) {
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
  } else {
    place_ = paddle::platform::CPUPlace();
  }

98 99 100 101 102 103 104 105 106 107
  char *onnx_proto = nullptr;
  int out_size;
  if (config_.model_from_memory()) {
    paddle2onnx::Export(config_.prog_file().data(), config_.prog_file().size(),
                        config_.params_file().data(),
                        config_.params_file().size(), &onnx_proto, &out_size);
  } else {
    paddle2onnx::Export(config_.prog_file().c_str(),
                        config_.params_file().c_str(), &onnx_proto, &out_size);
  }
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

  Ort::SessionOptions session_options;
  if (config_.ort_optimization_enabled()) {
    session_options.SetGraphOptimizationLevel(
        GraphOptimizationLevel::ORT_ENABLE_ALL);
  }
  // Turn optimization off first, and then turn it on when it's stable
  // session_options.SetExecutionMode(ExecutionMode::ORT_SEQUENTIAL);
  // session_options.EnableCpuMemArena();
  // session_options.EnableMemPattern();
  // session_options.SetInterOpNumThreads(config_.cpu_math_library_num_threads());
  session_options.SetIntraOpNumThreads(config_.cpu_math_library_num_threads());
  VLOG(2) << "ONNXRuntime threads " << config_.cpu_math_library_num_threads();
  if (config_.profile_enabled()) {
    LOG(WARNING) << "ONNXRuntime Profiler is activated, which might affect the "
                    "performance";
#if defined(_WIN32)
    session_options.EnableProfiling(L"ONNX");
#else
    session_options.EnableProfiling("ONNX");
#endif
  } else {
    VLOG(2) << "ONNXRuntime Profiler is deactivated, and no profiling report "
               "will be "
               "generated.";
  }
134
  session_ = {env_, onnx_proto, static_cast<size_t>(out_size), session_options};
135
  binding_ = std::make_shared<Ort::IoBinding>(session_);
136

137 138
  Ort::MemoryInfo memory_info(device_name, OrtDeviceAllocator,
                              place_.GetDeviceId(), OrtMemTypeDefault);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  Ort::Allocator allocator(session_, memory_info);

  size_t n_inputs = session_.GetInputCount();
  for (size_t i = 0; i < n_inputs; ++i) {
    auto input_name = session_.GetInputName(i, allocator);
    auto type_info = session_.GetInputTypeInfo(i);
    std::vector<int64_t> shape =
        type_info.GetTensorTypeAndShapeInfo().GetShape();
    ONNXTensorElementDataType data_type =
        type_info.GetTensorTypeAndShapeInfo().GetElementType();
    input_desc_.emplace_back(ONNXDesc{input_name, shape, data_type});
    allocator.Free(input_name);
  }

  size_t n_outputs = session_.GetOutputCount();
  for (size_t i = 0; i < n_outputs; ++i) {
    auto output_name = session_.GetOutputName(i, allocator);
    auto type_info = session_.GetOutputTypeInfo(i);
    std::vector<int64_t> shape =
        type_info.GetTensorTypeAndShapeInfo().GetShape();
    ONNXTensorElementDataType data_type =
        type_info.GetTensorTypeAndShapeInfo().GetElementType();
    output_desc_.emplace_back(ONNXDesc{output_name, shape, data_type});
162 163 164 165 166

    Ort::MemoryInfo out_memory_info(device_name, OrtDeviceAllocator,
                                    place_.GetDeviceId(), OrtMemTypeDefault);
    binding_->BindOutput(output_name, out_memory_info);

167 168
    allocator.Free(output_name);
  }
169 170
  delete onnx_proto;
  onnx_proto = nullptr;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  return true;
}

template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kONNXRuntime>(
    const AnalysisConfig &config) {
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }

  PADDLE_ENFORCE_EQ(
      config.is_valid(), true,
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));

  VLOG(3) << "create ONNXRuntimePredictor";

  std::unique_ptr<PaddlePredictor> predictor(new ONNXRuntimePredictor(config));
  // Each config can only be used for one predictor.
  config.SetInValid();
  auto predictor_p = dynamic_cast<ONNXRuntimePredictor *>(predictor.get());

  if (!predictor_p->Init()) {
    return nullptr;
  }

  return predictor;
}

std::vector<std::string> ONNXRuntimePredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto input_desc : input_desc_) {
    input_names.push_back(input_desc.name);
  }
  return input_names;
}

std::map<std::string, std::vector<int64_t>>
ONNXRuntimePredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  for (auto input_desc : input_desc_) {
    input_shapes[input_desc.name] = input_desc.shape;
  }
  return input_shapes;
}

std::vector<std::string> ONNXRuntimePredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto output_desc : output_desc_) {
    output_names.push_back(output_desc.name);
  }
  return output_names;
}

227 228 229 230 231 232 233 234 235 236 237 238
bool ONNXRuntimePredictor::FindONNXDesc(const std::string &name,
                                        bool is_input) {
  if (is_input) {
    for (auto i : input_desc_)
      if (i.name == name) return true;
  } else {
    for (auto i : output_desc_)
      if (i.name == name) return true;
  }
  return false;
}

239 240
std::unique_ptr<ZeroCopyTensor> ONNXRuntimePredictor::GetInputTensor(
    const std::string &name) {
241 242 243 244 245
  PADDLE_ENFORCE_EQ(FindONNXDesc(name, true), true,
                    platform::errors::PreconditionNotMet(
                        "The in variable named %s is not found in the "
                        "ONNXPredictor.",
                        name));
246
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(nullptr, this));
247 248 249 250 251 252 253 254
  res->input_or_output_ = true;
  res->SetName(name);
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = place_;
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
255 256
  res->SetOrtMark(true);
  res->SetOrtBinding(binding_);
257 258 259 260 261
  return res;
}

std::unique_ptr<ZeroCopyTensor> ONNXRuntimePredictor::GetOutputTensor(
    const std::string &name) {
262 263 264 265 266
  PADDLE_ENFORCE_EQ(FindONNXDesc(name, false), true,
                    platform::errors::PreconditionNotMet(
                        "The out variable named %s is not found in the "
                        "ONNXPredictor.",
                        name));
267
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(nullptr, this));
268 269 270 271 272 273 274 275
  res->input_or_output_ = false;
  res->SetName(name);
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = place_;
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
276 277 278 279 280 281 282 283 284
  res->SetOrtMark(true);
  res->SetOrtBinding(binding_);
  int size = output_desc_.size();
  for (int i = 0; i < size; ++i)
    if (output_desc_[i].name == name) {
      res->idx_ = i;
      res->dtype_ = ConvertONNXType(output_desc_[i].dtype);
      break;
    }
285 286 287 288 289 290 291 292 293 294 295 296
  return res;
}

bool ONNXRuntimePredictor::Run(const std::vector<PaddleTensor> &inputs,
                               std::vector<PaddleTensor> *output_data,
                               int batch_size) {
  LOG(ERROR) << "Not support Run";
  return false;
}

bool ONNXRuntimePredictor::ZeroCopyRun() {
  try {
H
heliqi 已提交
297 298 299 300 301 302
    const char *device_name = place_ == PlaceType::kCPU ? "Cpu" : "Cuda";
    for (auto output : output_desc_) {
      Ort::MemoryInfo out_memory_info(device_name, OrtDeviceAllocator,
                                      place_.GetDeviceId(), OrtMemTypeDefault);
      binding_->BindOutput(output.name.c_str(), out_memory_info);
    }
303
    session_.Run({}, *(binding_.get()));
304 305 306 307 308 309 310 311
  } catch (const std::exception &e) {
    LOG(ERROR) << e.what();
    return false;
  }

  return true;
}

312
std::unique_ptr<PaddlePredictor> ONNXRuntimePredictor::Clone(void *stream) {
313 314 315 316 317 318 319 320 321
  LOG(ERROR) << "Not support Clone(), Please create new Predictor";
  return nullptr;
}

uint64_t ONNXRuntimePredictor::TryShrinkMemory() {
  return paddle::memory::Release(place_);
}

ONNXRuntimePredictor::~ONNXRuntimePredictor() {
322 323 324
  binding_->ClearBoundInputs();
  binding_->ClearBoundOutputs();

325 326 327
  memory::Release(place_);
}

328 329 330 331 332 333 334 335 336 337
const void *ONNXRuntimePredictor::GetDeviceContexts() const {
  // TODO(inference): Support private device contexts.
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
  const auto &dev_ctxs = pool.device_contexts();
  return &const_cast<std::map<
      phi::Place, std::shared_future<std::unique_ptr<phi::DeviceContext>>> &>(
      dev_ctxs);
}

338
}  // namespace paddle