LearningRateScheduler.cpp 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "LearningRateScheduler.h"
#include "paddle/utils/StringUtil.h"

namespace paddle {

ClassRegistrar<LearningRateScheduler, OptimizationConfig>
    LearningRateScheduler::registrar_;

LearningRateScheduler* LearningRateScheduler::create(
    const OptimizationConfig& config) {
  return registrar_.createByType(config.learning_rate_schedule(), config);
}

// LRS stands for LearningRateScheduler

class BaseLRS : public LearningRateScheduler {
W
Wu Yi 已提交
31
 public:
Z
zhangjinchao01 已提交
32 33 34 35 36
  explicit BaseLRS(const OptimizationConfig& config)
      : learningRate_(config.learning_rate()),
        a_(config.learning_rate_decay_a()),
        b_(config.learning_rate_decay_b()) {}

W
Wu Yi 已提交
37
 protected:
Z
zhangjinchao01 已提交
38 39 40 41 42 43
  real learningRate_;
  real a_;
  real b_;
};

class ConstLRS : public BaseLRS {
W
Wu Yi 已提交
44
 public:
Z
zhangjinchao01 已提交
45 46 47 48 49 50 51 52
  explicit ConstLRS(const OptimizationConfig& config) : BaseLRS(config) {}
  virtual real calcLearningRate(int64_t numSamplesProcessed, int64_t pass) {
    return learningRate_;
  }
};
REGISTER_LEARNING_RATE_SCHEDULER(constant, ConstLRS);

class PolyLRS : public BaseLRS {
W
Wu Yi 已提交
53
 public:
Z
zhangjinchao01 已提交
54 55 56 57 58 59 60 61
  explicit PolyLRS(const OptimizationConfig& config) : BaseLRS(config) {}
  virtual real calcLearningRate(int64_t numSamplesProcessed, int64_t pass) {
    return learningRate_ * pow(1.0 + a_ * numSamplesProcessed, -b_);
  }
};
REGISTER_LEARNING_RATE_SCHEDULER(poly, PolyLRS);

class CaffePolyLRS : public BaseLRS {
W
Wu Yi 已提交
62
 public:
Z
zhangjinchao01 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  explicit CaffePolyLRS(const OptimizationConfig& config) : BaseLRS(config) {}
  virtual real calcLearningRate(int64_t numSamplesProcessed, int64_t pass) {
    if (numSamplesProcessed > a_) {
      LOG_FIRST_N(WARNING, 1)
          << "Using caffe_poly learning rate schedule, "
          << "learning rate hits ZERO when "
          << "numSamplesProcessed > config.learning_rate_decay_b(), "
          << "training is over and you can stop it. "
          << "See common/LearningRateScheduler.cpp for more info.";
      return 0;
    } else {
      return learningRate_ * pow(1.0 - numSamplesProcessed / a_, b_);
    }
  }
};
REGISTER_LEARNING_RATE_SCHEDULER(caffe_poly, CaffePolyLRS);

class ExpLRS : public BaseLRS {
W
Wu Yi 已提交
81
 public:
Z
zhangjinchao01 已提交
82 83 84 85 86 87 88 89 90
  explicit ExpLRS(const OptimizationConfig& config) : BaseLRS(config) {}
  virtual real calcLearningRate(int64_t numSamplesProcessed, int64_t pass) {
    double decayRatio = (double)numSamplesProcessed / b_;
    return learningRate_ * pow(a_, decayRatio);
  }
};
REGISTER_LEARNING_RATE_SCHEDULER(exp, ExpLRS);

class DiscreteExpLRS : public BaseLRS {
W
Wu Yi 已提交
91
 public:
Z
zhangjinchao01 已提交
92 93 94 95 96 97 98 99 100
  explicit DiscreteExpLRS(const OptimizationConfig& config) : BaseLRS(config) {}
  virtual real calcLearningRate(int64_t numSamplesProcessed, int64_t pass) {
    int numDecays = floor(numSamplesProcessed / b_);
    return learningRate_ * pow(a_, numDecays);
  }
};
REGISTER_LEARNING_RATE_SCHEDULER(discexp, DiscreteExpLRS);

class LinearLRS : public BaseLRS {
W
Wu Yi 已提交
101
 public:
Z
zhangjinchao01 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115
  explicit LinearLRS(const OptimizationConfig& config) : BaseLRS(config) {}
  virtual real calcLearningRate(int64_t numSamplesProcessed, int64_t pass) {
    return std::max(learningRate_ - a_ * numSamplesProcessed, b_);
  }
};
REGISTER_LEARNING_RATE_SCHEDULER(linear, LinearLRS);

/*
  specify learning rate through
  learning_rate_args = 'seg0:rate0,seg1:rate1,...,segK:rateK'
  if seg_{i-1} <= numSamples <= seg_i,
  then learning_rate = learning_rate_base * rate_i
*/
class ManualLRS : public BaseLRS {
W
Wu Yi 已提交
116
 public:
Z
zhangjinchao01 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  explicit ManualLRS(const OptimizationConfig& config)
      : BaseLRS(config), currentSegment_(0), lastNum_(0) {
    std::vector<std::string> pieces;
    str::split(config.learning_rate_args(), ',', &pieces);
    rates_.reserve(pieces.size());
    std::string s1, s2;

    for (auto& piece : pieces) {
      auto pos = piece.find(':');
      CHECK(pos != std::string::npos) << "Wrong format for learning_rate_args: "
                                      << config.learning_rate_args();
      segments_.push_back(str::to<int64_t>(piece.substr(0, pos)));
      rates_.push_back(str::to<real>(piece.substr(pos + 1)));
    }
  }

  virtual real calcLearningRate(int64_t numSamplesProcessed, int64_t pass) {
    return calc(numSamplesProcessed);
  }

  real calc(int64_t num) {
    // We assume that num never decreases.
    CHECK_LE(lastNum_, num);
    lastNum_ = num;
    while (currentSegment_ < rates_.size()) {
      if (num <= segments_[currentSegment_]) {
        return learningRate_ * rates_[currentSegment_];
      }
      ++currentSegment_;
      if (currentSegment_ < rates_.size()) {
        LOG(INFO) << " learning_rate changes to "
                  << learningRate_ * rates_[currentSegment_];
      }
    }
    return learningRate_ * rates_.back();
  }

W
Wu Yi 已提交
154
 protected:
Z
zhangjinchao01 已提交
155 156 157 158 159 160 161 162 163
  std::vector<real> rates_;
  std::vector<int64_t> segments_;
  size_t currentSegment_;
  int64_t lastNum_;
};

REGISTER_LEARNING_RATE_SCHEDULER(manual, ManualLRS);

class PassManualLRS : public ManualLRS {
W
Wu Yi 已提交
164
 public:
Z
zhangjinchao01 已提交
165 166 167 168 169 170 171 172 173
  explicit PassManualLRS(const OptimizationConfig& config)
      : ManualLRS(config) {}
  virtual real calcLearningRate(int64_t numSamplesProcessed, int64_t pass) {
    return calc(pass);
  }
};

REGISTER_LEARNING_RATE_SCHEDULER(pass_manual, PassManualLRS);
}  // namespace paddle