MDLstmLayer.cpp 26.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "LstmLayer.h"
#include "paddle/math/BaseMatrix.h"
Y
Yu Yang 已提交
17
#include "paddle/math/Matrix.h"
Z
zhangjinchao01 已提交
18 19 20 21

namespace paddle {

class CoordIterator {
W
Wu Yi 已提交
22
 public:
Z
zhangjinchao01 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  std::vector<int> dims_;
  std::vector<bool> directions_;
  std::vector<int> curPos_;
  bool end_;

  void step(size_t d, bool reversed) {
    if (directions_[d] ^ reversed) {
      if (curPos_[d] == dims_[d] - 1) {
        curPos_[d] = 0;
        if (d) {
          step(d - 1, reversed);
        } else {
          end_ = true;
        }
      } else {
        curPos_[d]++;
      }
    } else {
      if (curPos_[d] == 0) {
        curPos_[d] = dims_[d] - 1;
        if (d) {
          step(d - 1, reversed);
        } else {
          end_ = true;
        }
      } else {
        curPos_[d]--;
      }
    }
  }

W
Wu Yi 已提交
54
 public:
Z
zhangjinchao01 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  CoordIterator(std::vector<int> dim, std::vector<bool> directions)
      : dims_(dim), directions_(directions), end_(false) {
    CHECK_EQ(dims_.size(), directions_.size());
    for (size_t i = 0; i < dims_.size(); i++) {
      curPos_.push_back(-1);
    }
  }
  CoordIterator& operator++() {
    step(dims_.size() - 1, false);
    return *this;
  }

  CoordIterator& operator--() {
    step(dims_.size() - 1, true);
    return *this;
  }

  std::vector<int>& curPos() { return curPos_; }

  int offset() {
    int offset = curPos_[0];
    for (size_t i = 1; i < dims_.size(); i++) {
      offset = offset * dims_[i] + curPos_[i];
    }
    return offset;
  }

  int offset(const std::vector<int>& pos) {
    int offset = pos[0];
    for (size_t i = 1; i < dims_.size(); i++) {
      offset = offset * dims_[i] + pos[i];
    }
    return offset;
  }

  std::vector<int>& begin() {
    for (size_t i = 0; i < dims_.size(); i++) {
      curPos_[i] = directions_[i] ? 0 : dims_[i] - 1;
    }
    end_ = false;
    return curPos_;
  }

  std::vector<int>& rbegin() {
    for (size_t i = 0; i < dims_.size(); i++) {
      curPos_[i] = directions_[i] ? dims_[i] - 1 : 0;
    }
    end_ = false;
    return curPos_;
  }

  bool end() { return end_; }

108 109
  bool getPrePos(const std::vector<int>& delays,
                 int idx,
Z
zhangjinchao01 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                 std::vector<int>& prePos) {
    bool isAvial = true;
    prePos.clear();
    prePos.reserve(directions_.size());
    for (size_t i = 0; i < directions_.size(); i++) {
      if (int(i) == idx) {
        prePos.push_back(curPos_[i] + delays[i] * (directions_[i] ? 1 : -1));
        if (prePos[i] < 0) {
          prePos[i] = 0;
          isAvial = false;
        }
        if (prePos[i] >= dims_[i]) {
          prePos[i] = dims_[i] - 1;
          isAvial = false;
        }
      } else {
        prePos.push_back(curPos_[i]);
      }
    }
    return isAvial;
  }

132 133
  bool getNextPos(const std::vector<int>& delays,
                  int idx,
Z
zhangjinchao01 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
                  std::vector<int>& nextPos) {
    bool isAvial = true;
    nextPos.clear();
    nextPos.reserve(directions_.size());
    for (size_t i = 0; i < directions_.size(); i++) {
      if (int(i) == idx) {
        nextPos.push_back(curPos_[i] - delays[i] * (directions_[i] ? 1 : -1));
        if (nextPos[i] < 0) {
          nextPos[i] = 0;
          isAvial = false;
        }
        if (nextPos[i] >= dims_[i]) {
          nextPos[i] = dims_[i] - 1;
          isAvial = false;
        }
      } else {
        nextPos.push_back(curPos_[i]);
      }
    }
    return isAvial;
  }
};
/*
 * MDLstmLayer takes 1 input layer with size * (3+numDims).
 * For each sequence [start, end] it performs the following computation:
 * out_i = actState(state_i) * actGate(outputGate_i)
 *
 * For example the image with 2 dims, we take the scanning order from left-top
 * to right-bottom, then the 2 previous states of the current pixels are the
 * ones located at left and top. And each of them has a independent forget gate.
 *
 * state_i = actInput(input_i) * actGate(inputGate_i) +
 *           \sum{j}(actGate(forgetGate_i_j) * state_prev_i_j)
 *
 * inputGate = input_i * inputW + \sum{j}(output_prev_i_j * recurrInputW_j) +
 *             \sum{j}(state_prev_i_j * inputCheck_j)
 *
 * ouputGate = input_i * outputW + \sum{j}(output_prev_i_j * recurrOutputW_j) +
 *             state_i * outputCheck
 *
 * forgetGate_j = input_i * forgetW_j + \sum{j}(output_prev_i_j *
 *                recurrForgetW_j) + \sum{j}(state_prev_i_j * forgetCheck_j)
 *
 * IG Layer: (Input, InputGate, ForgetGates, OutputGate) * OutputSize
 * */

class MDLstmLayer : public LstmLayer {
W
Wu Yi 已提交
181
 public:
Z
zhangjinchao01 已提交
182 183
  explicit MDLstmLayer(const LayerConfig& config) : LstmLayer(config) {}

Y
Yu Yang 已提交
184 185
  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;
Z
zhangjinchao01 已提交
186

Y
Yu Yang 已提交
187
  void forward(PassType passType) override;
Z
zhangjinchao01 已提交
188

Y
Yu Yang 已提交
189
  void backward(const UpdateCallback& callback) override;
Z
zhangjinchao01 已提交
190

W
Wu Yi 已提交
191
 protected:
Z
zhangjinchao01 已提交
192 193 194 195 196
  void forwardOneSequence(int start, CoordIterator& coordIter);
  void backwardOneSequence(int start, CoordIterator& coordIter);
  void forwardGate2OutputSequence(int start, CoordIterator& coordIter);
  void backwardGate2OutputSequence(int start, CoordIterator& coordIter);

W
Wu Yi 已提交
197
 protected:
Z
zhangjinchao01 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  std::vector<Argument> frameInputGate_;
  std::vector<Argument> frameForgetGate_;
  std::vector<Argument> frameOutputGate_;
  std::vector<Argument> frameInputNode_;
  std::vector<Argument> frameGate_;
  std::vector<Argument> frameState_;
  std::vector<Argument> framePreOutput_;
  std::vector<Argument> frameOutput_;

  // Activation
  std::unique_ptr<ActivationFunction> activationGate_;
  std::unique_ptr<ActivationFunction> activationState_;

  int numDims_;
  size_t numBlocks_;
  std::vector<bool> directions_;
  std::vector<int> delays_;
  std::vector<std::vector<int>> dimsV_;
};

REGISTER_LAYER(mdlstmemory, MDLstmLayer);

bool MDLstmLayer::init(const LayerMap& layerMap,
                       const ParameterMap& parameterMap) {
  if (!Layer::init(layerMap, parameterMap)) return false;
  CHECK_EQ(1U, inputLayers_.size());
  CHECK_EQ(1U, parameters_.size());

  numBlocks_ = getSize();
  numDims_ = config_.directions_size();
  CHECK_EQ(numBlocks_ * numBlocks_ * (3 + numDims_), parameters_[0]->getSize());

  // inode(1), ig(1), fg(numDims_), og(1), peepIg(1), peepFg(numDims_),
  // peepOg(1), then size of localBias_ is 3+numDims_
  CHECK_EQ(numBlocks_ * (5 + 2 * numDims_), biasParameter_->getSize());
  weight_.reset(
      new Weight(numBlocks_, numBlocks_ * (3 + numDims_), parameters_[0]));
  if (biasParameter_.get() != NULL) {
    bias_.reset(new Weight(1, numBlocks_ * (5 + 2 * numDims_), biasParameter_));
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    localBias_ = Matrix::create(nullptr,
                                /* height= */ 1,
                                numBlocks_ * (3 + numDims_),
                                /* trans= */ false,
                                useGpu_);
    checkIg_ = Matrix::create(nullptr,
                              /* height= */ 1,
                              numBlocks_,
                              /* trans= */ false,
                              useGpu_);
    checkFg_ = Matrix::create(nullptr,
                              /* height= */ numDims_,
                              numBlocks_,
                              /* trans= */ false,
                              useGpu_);
    checkOg_ = Matrix::create(nullptr,
                              /* height= */ 1,
                              numBlocks_,
                              /* trans= */ false,
                              useGpu_);
    localBiasGrad_ = Matrix::create(nullptr,
                                    /* height= */ 1,
                                    numBlocks_ * (3 + numDims_),
                                    /* trans= */ false,
                                    useGpu_);
    checkIgGrad_ = Matrix::create(nullptr,
                                  /* height= */ 1,
                                  numBlocks_,
                                  /* trans= */ false,
                                  useGpu_);
    checkFgGrad_ = Matrix::create(nullptr,
                                  /* height= */ numDims_,
                                  numBlocks_,
                                  /* trans= */ false,
                                  useGpu_);
    checkOgGrad_ = Matrix::create(nullptr,
                                  /* height= */ 1,
                                  numBlocks_,
                                  /* trans= */ false,
                                  useGpu_);
Z
zhangjinchao01 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

    localBias_->setData(bias_->getW()->getData());
    checkIg_->setData(bias_->getW()->getData() + numBlocks_ * (3 + numDims_));
    checkFg_->setData(bias_->getW()->getData() + numBlocks_ * (4 + numDims_));
    checkOg_->setData(bias_->getW()->getData() +
                      numBlocks_ * (4 + 2 * numDims_));

    if (bias_->getWGrad()) {
      localBiasGrad_->setData(bias_->getWGrad()->getData());
      checkIgGrad_->setData(bias_->getWGrad()->getData() +
                            numBlocks_ * (3 + numDims_));
      checkFgGrad_->setData(bias_->getWGrad()->getData() +
                            numBlocks_ * (4 + numDims_));
      checkOgGrad_->setData(bias_->getWGrad()->getData() +
                            numBlocks_ * (4 + 2 * numDims_));
    }
  } else {
    LOG(FATAL) << "Bias should be here.";
  }
  for (int i = 0; i < numDims_; i++) {
    directions_.push_back(config_.directions(i));
  }
  for (int i = 0; i < numDims_; i++) {
    delays_.push_back(-1);
  }
  activationGate_.reset(ActivationFunction::create(config_.active_gate_type()));
  activationState_.reset(
      ActivationFunction::create(config_.active_state_type()));

  return true;
}

void MDLstmLayer::forward(PassType passType) {
  Layer::forward(passType);

  const Argument& input = getInput(0);
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  int numSequences = input.getNumSequences();
  resetOutput(batchSize, numBlocks_);
  CHECK_EQ(numBlocks_ * (3 + numDims_), input.value->getWidth());
  const int* starts = input.sequenceStartPositions->getData(false);
  CHECK_EQ(starts[numSequences], batchSize);

  int* dimsData = input.cpuSequenceDims->getData();
Y
Yu Yang 已提交
322
  CHECK_EQ(int(input.cpuSequenceDims->getSize()), numDims_* numSequences);
Z
zhangjinchao01 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

  for (int i = 0; i < numSequences; i++) {
    std::vector<int> dims;
    for (int j = 0; j < numDims_; j++) {
      dims.push_back(dimsData[i * numDims_ + j]);
    }
    dimsV_.push_back(dims);
  }

  frameInputGate_.reserve(batchSize);
  frameForgetGate_.reserve(batchSize);
  frameOutputGate_.reserve(batchSize);
  frameInputNode_.reserve(batchSize);
  frameGate_.reserve(batchSize);
  frameState_.reserve(batchSize);
  framePreOutput_.reserve(batchSize);
  frameOutput_.reserve(batchSize);

  Matrix::resizeOrCreate(gate_.value,
342 343 344 345
                         /* height= */ batchSize,
                         numBlocks_ * (3 + numDims_),
                         /* trans= */ false,
                         useGpu_);
Z
zhangjinchao01 已提交
346 347 348

  for (int i = frameGate_.size(); i < batchSize; i++) {
    Argument arg;
349 350 351 352 353 354 355 356 357 358
    arg.value = Matrix::create(nullptr,
                               /* height= */ 1,
                               numBlocks_ * (3 + numDims_),
                               /* trans= */ false,
                               useGpu_);
    arg.grad = Matrix::create(nullptr,
                              /* height= */ 1,
                              numBlocks_ * (3 + numDims_),
                              /* trans= */ false,
                              useGpu_);
Z
zhangjinchao01 已提交
359 360 361 362
    frameGate_.push_back(arg);
  }
  for (int i = frameInputGate_.size(); i < batchSize; i++) {
    Argument arg;
363 364 365 366 367 368 369 370 371 372
    arg.value = Matrix::create(nullptr,
                               /* height= */ 1,
                               numBlocks_,
                               /* trans= */ false,
                               useGpu_);
    arg.grad = Matrix::create(nullptr,
                              /* height= */ 1,
                              numBlocks_,
                              /* trans= */ false,
                              useGpu_);
Z
zhangjinchao01 已提交
373 374 375 376
    frameInputGate_.push_back(arg);
  }
  for (int i = frameForgetGate_.size(); i < batchSize; i++) {
    Argument arg;
377 378 379 380 381 382 383 384 385 386
    arg.value = Matrix::create(nullptr,
                               /* height= */ numDims_,
                               numBlocks_,
                               /* trans= */ false,
                               useGpu_);
    arg.grad = Matrix::create(nullptr,
                              /* height= */ numDims_,
                              numBlocks_,
                              /* trans= */ false,
                              useGpu_);
Z
zhangjinchao01 已提交
387 388 389 390
    frameForgetGate_.push_back(arg);
  }
  for (int i = frameOutputGate_.size(); i < batchSize; i++) {
    Argument arg;
391 392 393 394 395 396 397 398 399 400
    arg.value = Matrix::create(nullptr,
                               /* height= */ 1,
                               numBlocks_,
                               /* trans= */ false,
                               useGpu_);
    arg.grad = Matrix::create(nullptr,
                              /* height= */ 1,
                              numBlocks_,
                              /* trans= */ false,
                              useGpu_);
Z
zhangjinchao01 已提交
401 402 403 404
    frameOutputGate_.push_back(arg);
  }
  for (int i = frameInputNode_.size(); i < batchSize; i++) {
    Argument arg;
405 406 407 408 409 410 411 412 413 414
    arg.value = Matrix::create(nullptr,
                               /* height= */ 1,
                               numBlocks_,
                               /* trans= */ false,
                               useGpu_);
    arg.grad = Matrix::create(nullptr,
                              /* height= */ 1,
                              numBlocks_,
                              /* trans= */ false,
                              useGpu_);
Z
zhangjinchao01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    frameInputNode_.push_back(arg);
  }
  for (int i = frameState_.size(); i < batchSize; i++) {
    Argument arg;
    arg.value = Matrix::create(
        /* height= */ 1, numBlocks_, /* trans= */ false, useGpu_);
    frameState_.push_back(arg);
  }
  for (int i = framePreOutput_.size(); i < batchSize; i++) {
    Argument arg;
    arg.value = Matrix::create(
        /* height= */ 1, numBlocks_, /* trans= */ false, useGpu_);
    framePreOutput_.push_back(arg);
  }
  for (int i = frameOutput_.size(); i < batchSize; i++) {
    Argument arg;
431 432 433 434 435 436 437 438 439 440
    arg.value = Matrix::create(nullptr,
                               /* height= */ 1,
                               numBlocks_,
                               /* trans= */ false,
                               useGpu_);
    arg.grad = Matrix::create(nullptr,
                              /* height= */ 1,
                              numBlocks_,
                              /* trans= */ false,
                              useGpu_);
Z
zhangjinchao01 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    frameOutput_.push_back(arg);
  }

  for (int i = 0; i < batchSize; i++) {
    frameOutput_[i].value->setData(output_.value->getData() + i * numBlocks_);
    frameGate_[i].value->setData(gate_.value->getData() +
                                 i * numBlocks_ * (3 + numDims_));
    frameInputNode_[i].value->setData(gate_.value->getData() +
                                      i * numBlocks_ * (3 + numDims_) +
                                      numBlocks_ * 0);
    frameInputGate_[i].value->setData(gate_.value->getData() +
                                      i * numBlocks_ * (3 + numDims_) +
                                      numBlocks_ * 1);
    frameForgetGate_[i].value->setData(gate_.value->getData() +
                                       i * numBlocks_ * (3 + numDims_) +
                                       numBlocks_ * 2);
    frameOutputGate_[i].value->setData(gate_.value->getData() +
                                       i * numBlocks_ * (3 + numDims_) +
                                       numBlocks_ * (2 + numDims_));
  }

  AsyncGpuBlock asyncGpuBlock;
  gate_.value->assign(*input.value);

  if (bias_) {
    gate_.value->addBias(*localBias_, 1);
  }

  for (int i = 0; i < numSequences; i++) {
    CoordIterator coordIter(dimsV_[i], directions_);
    forwardOneSequence(starts[i], coordIter);
  }
}

void MDLstmLayer::forwardGate2OutputSequence(int start,
                                             CoordIterator& coordIter) {
  int idxCurr = start + coordIter.offset();
  std::vector<int> preOffsetV;
  preOffsetV.reserve(numDims_);
  for (int i = 0; i < numDims_; i++) {
    std::vector<int> prePos;
    if (coordIter.getPrePos(delays_, i, prePos)) {
      preOffsetV[i] = coordIter.offset(prePos);
    } else {
      preOffsetV[i] = -1;
    }
  }

  for (int i = 0; i < numDims_; i++) {
    if (preOffsetV[i] >= 0) {
      frameInputGate_[idxCurr].value->addDotMul(
          *frameState_[start + preOffsetV[i]].value, *checkIg_, 1.0, 1.0);

      MatrixPtr fgGateOneDim = Matrix::create(
495 496 497 498 499
          frameForgetGate_[idxCurr].value->getData() + i * numBlocks_,
          1,
          numBlocks_,
          false,
          useGpu_);
Z
zhangjinchao01 已提交
500
      MatrixPtr checkFgOneDim =
501 502 503 504 505 506 507
          Matrix::create(checkFg_->getData() + i * numBlocks_,
                         1.0,
                         numBlocks_,
                         false,
                         useGpu_);
      fgGateOneDim->addDotMul(
          *frameState_[start + preOffsetV[i]].value, *checkFgOneDim, 1.0, 1.0);
Z
zhangjinchao01 已提交
508 509
    }
  }
510 511 512 513 514 515
  auto status = activationGate_->forward(frameInputGate_[idxCurr]);
  status.check();
  status = activationGate_->forward(frameForgetGate_[idxCurr]);
  status.check();
  status = activation_->forward(frameInputNode_[idxCurr]);
  status.check();
Z
zhangjinchao01 已提交
516 517 518 519 520

  frameState_[idxCurr].value->zeroMem();
  for (int i = 0; i < numDims_; i++) {
    if (preOffsetV[i] >= 0) {
      MatrixPtr fgGateOneDim = Matrix::create(
521 522 523 524 525
          frameForgetGate_[idxCurr].value->getData() + i * numBlocks_,
          1,
          numBlocks_,
          false,
          useGpu_);
Z
zhangjinchao01 已提交
526 527 528 529 530
      frameState_[idxCurr].value->addDotMul(
          *frameState_[start + preOffsetV[i]].value, *fgGateOneDim, 1.0, 1.0);
    }
  }
  frameState_[idxCurr].value->addDotMul(*frameInputNode_[idxCurr].value,
531 532
                                        *frameInputGate_[idxCurr].value,
                                        1.0,
Z
zhangjinchao01 已提交
533 534
                                        1.0);

535 536
  frameOutputGate_[idxCurr].value->addDotMul(
      *frameState_[idxCurr].value, *checkOg_, 1.0, 1.0);
537 538
  status = activationGate_->forward(frameOutputGate_[idxCurr]);
  status.check();
Z
zhangjinchao01 已提交
539 540

  framePreOutput_[idxCurr].value->copyFrom(*(frameState_[idxCurr].value));
541 542
  status = activationState_->forward(framePreOutput_[idxCurr]);
  status.check();
Z
zhangjinchao01 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555

  frameOutput_[idxCurr].value->dotMul(*framePreOutput_[idxCurr].value,
                                      *frameOutputGate_[idxCurr].value);
}

void MDLstmLayer::forwardOneSequence(int start, CoordIterator& coordIter) {
  for (coordIter.begin(); !coordIter.end(); ++coordIter) {
    int offset = coordIter.offset();
    for (int i = 0; i < numDims_; i++) {
      std::vector<int> prePos;
      if (coordIter.getPrePos(delays_, i, prePos)) {
        int preOffset = coordIter.offset(prePos);
        frameGate_[start + offset].value->mul(
556
            *frameOutput_[start + preOffset].value, *weight_->getW(), 1.0, 1.0);
Z
zhangjinchao01 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570
      }
    }
    forwardGate2OutputSequence(start, coordIter);
  }
}

void MDLstmLayer::backward(const UpdateCallback& callback) {
  const Argument& input = getInput(0);
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  const int* starts = input.sequenceStartPositions->getData(false);
  size_t numSequences = input.getNumSequences();

  Matrix::resizeOrCreate(gate_.grad,
571 572 573 574
                         /* height= */ batchSize,
                         numBlocks_ * (3 + numDims_),
                         /* trans= */ false,
                         useGpu_);
Z
zhangjinchao01 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

  for (int i = 0; i < batchSize; i++) {
    if (frameState_[i].grad == NULL)
      frameState_[i].grad = Matrix::create(
          /* height= */ 1, numBlocks_, /* trans= */ false, useGpu_);
  }
  for (int i = 0; i < batchSize; i++) {
    if (framePreOutput_[i].grad == NULL)
      framePreOutput_[i].grad = Matrix::create(
          /* height= */ 1, numBlocks_, /* trans= */ false, useGpu_);
  }

  for (int i = 0; i < batchSize; i++) {
    frameOutput_[i].grad->setData(output_.grad->getData() + i * numBlocks_);
    frameGate_[i].grad->setData(gate_.grad->getData() +
                                i * numBlocks_ * (3 + numDims_));
    frameInputNode_[i].grad->setData(gate_.grad->getData() +
                                     i * numBlocks_ * (3 + numDims_) +
                                     numBlocks_ * 0);
    frameInputGate_[i].grad->setData(gate_.grad->getData() +
                                     i * numBlocks_ * (3 + numDims_) +
                                     numBlocks_ * 1);
    frameForgetGate_[i].grad->setData(gate_.grad->getData() +
                                      i * numBlocks_ * (3 + numDims_) +
                                      numBlocks_ * 2);
    frameOutputGate_[i].grad->setData(gate_.grad->getData() +
                                      i * numBlocks_ * (3 + numDims_) +
                                      numBlocks_ * (2 + numDims_));
  }

  {
    AsyncGpuBlock asyncGpuBlock;

    for (size_t i = 0; i < numSequences; i++) {
      CoordIterator coordIter(dimsV_[i], directions_);
      backwardOneSequence(starts[i], coordIter);
    }
  }

  if (input.grad) {
    input.grad->add(*gate_.grad);
  }
  if (bias_ && bias_->getWGrad()) {
    localBiasGrad_->collectBias(*gate_.grad, 1);
    bias_->getParameterPtr()->incUpdate(callback);
  }

  weight_->getParameterPtr()->incUpdate(callback);
}

void MDLstmLayer::backwardGate2OutputSequence(int start,
                                              CoordIterator& coordIter) {
  int idxCurr = start + coordIter.offset();
  std::vector<int> preOffsetV;
  std::vector<int> nextOffsetV;
  preOffsetV.reserve(numDims_);
  nextOffsetV.reserve(numDims_);
  for (int i = 0; i < numDims_; i++) {
    std::vector<int> prePos;
    if (coordIter.getPrePos(delays_, i, prePos)) {
      preOffsetV[i] = coordIter.offset(prePos);
    } else {
      preOffsetV[i] = -1;
    }
    std::vector<int> nextPos;
    if (coordIter.getNextPos(delays_, i, nextPos)) {
      nextOffsetV[i] = coordIter.offset(nextPos);
    } else {
      nextOffsetV[i] = -1;
    }
  }

  framePreOutput_[idxCurr].grad->dotMul(*frameOutput_[idxCurr].grad,
                                        *frameOutputGate_[idxCurr].value);
649
  activationState_->backward(framePreOutput_[idxCurr]).check();
Z
zhangjinchao01 已提交
650 651 652 653
  frameState_[idxCurr].grad->copyFrom(*(framePreOutput_[idxCurr].grad));

  frameOutputGate_[idxCurr].grad->dotMul(*frameOutput_[idxCurr].grad,
                                         *framePreOutput_[idxCurr].value);
654
  activationGate_->backward(frameOutputGate_[idxCurr]).check();
Z
zhangjinchao01 已提交
655

656 657
  frameState_[idxCurr].grad->addDotMul(
      *frameOutputGate_[idxCurr].grad, *checkOg_, 1.0, 1.0);
Z
zhangjinchao01 已提交
658 659 660 661 662 663 664 665
  for (int i = 0; i < numDims_; i++) {
    if (nextOffsetV[i] >= 0) {
      frameState_[idxCurr].grad->addDotMul(
          *frameInputGate_[start + nextOffsetV[i]].grad, *checkIg_, 1.0, 1.0);

      MatrixPtr fgGateOneDimGrad = Matrix::create(
          frameForgetGate_[start + nextOffsetV[i]].grad->getData() +
              i * numBlocks_,
666 667 668 669
          1,
          numBlocks_,
          false,
          useGpu_);
Z
zhangjinchao01 已提交
670 671 672
      MatrixPtr fgGateOneDimVal = Matrix::create(
          frameForgetGate_[start + nextOffsetV[i]].value->getData() +
              i * numBlocks_,
673 674 675 676
          1,
          numBlocks_,
          false,
          useGpu_);
Z
zhangjinchao01 已提交
677 678 679 680
      MatrixPtr checkFgOneDim = Matrix::create(
          checkFg_->getData() + i * numBlocks_, 1, numBlocks_, false, useGpu_);

      frameState_[idxCurr].grad->addDotMul(
681 682 683 684 685
          *fgGateOneDimGrad, *checkFgOneDim, 1.0, 1.0);
      frameState_[idxCurr].grad->addDotMul(
          *frameState_[start + nextOffsetV[i]].grad,
          *fgGateOneDimVal,
          1.0,
Z
zhangjinchao01 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698
          1.0);
    }
  }

  frameInputNode_[idxCurr].grad->dotMul(*frameState_[idxCurr].grad,
                                        *frameInputGate_[idxCurr].value);
  frameInputGate_[idxCurr].grad->dotMul(*frameState_[idxCurr].grad,
                                        *frameInputNode_[idxCurr].value);

  frameForgetGate_[idxCurr].grad->zeroMem();
  for (int i = 0; i < numDims_; i++) {
    if (preOffsetV[i] >= 0) {
      MatrixPtr fgGateOneDimGrad = Matrix::create(
699 700 701 702 703
          frameForgetGate_[idxCurr].grad->getData() + i * numBlocks_,
          1,
          numBlocks_,
          false,
          useGpu_);
Z
zhangjinchao01 已提交
704 705
      fgGateOneDimGrad->addDotMul(*frameState_[idxCurr].grad,
                                  *frameState_[start + preOffsetV[i]].value,
706 707
                                  1.0,
                                  1.0);
Z
zhangjinchao01 已提交
708 709 710
    }
  }

711 712 713
  activationGate_->backward(frameInputGate_[idxCurr]).check();
  activationGate_->backward(frameForgetGate_[idxCurr]).check();
  activation_->backward(frameInputNode_[idxCurr]).check();
Z
zhangjinchao01 已提交
714 715 716 717 718

  if (bias_->getWGrad()) {
    for (int i = 0; i < numDims_; i++) {
      if (preOffsetV[i] >= 0) {
        checkIgGrad_->addDotMul(*frameInputGate_[idxCurr].grad,
719 720
                                *frameState_[start + preOffsetV[i]].value,
                                1.0,
Z
zhangjinchao01 已提交
721 722 723
                                1.0);

        MatrixPtr fgGateOneDimGrad = Matrix::create(
724 725 726 727 728
            frameForgetGate_[idxCurr].grad->getData() + i * numBlocks_,
            1,
            numBlocks_,
            false,
            useGpu_);
Z
zhangjinchao01 已提交
729
        MatrixPtr checkFgOneDimGrad =
730 731 732 733 734
            Matrix::create(checkFgGrad_->getData() + i * numBlocks_,
                           1,
                           numBlocks_,
                           false,
                           useGpu_);
Z
zhangjinchao01 已提交
735 736
        checkFgOneDimGrad->addDotMul(*fgGateOneDimGrad,
                                     *frameState_[start + preOffsetV[i]].value,
737 738
                                     1.0,
                                     1.0);
Z
zhangjinchao01 已提交
739 740
      }
    }
741 742
    checkOgGrad_->addDotMul(
        *frameOutputGate_[idxCurr].grad, *frameState_[idxCurr].value, 1.0, 1.0);
Z
zhangjinchao01 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755
  }
}

void MDLstmLayer::backwardOneSequence(int start, CoordIterator& coordIter) {
  MatrixPtr weightT = weight_->getW()->getTranspose();
  for (coordIter.rbegin(); !coordIter.end(); --coordIter) {
    int offset = coordIter.offset();
    backwardGate2OutputSequence(start, coordIter);
    for (int i = 0; i < numDims_; i++) {
      std::vector<int> prePos;
      if (coordIter.getPrePos(delays_, i, prePos)) {
        int preOffset = coordIter.offset(prePos);
        frameOutput_[start + preOffset].grad->mul(
756
            *frameGate_[start + offset].grad, *weightT, 1.0, 1.0);
Z
zhangjinchao01 已提交
757 758
        if (weight_->getWGrad()) {
          weight_->getWGrad()->mul(
759 760
              *frameOutput_[start + preOffset].value->getTranspose(),
              *frameGate_[start + offset].grad,
761 762
              1.0,
              1.0);
Z
zhangjinchao01 已提交
763 764 765 766 767 768 769
        }
      }
    }
  }
}

}  // namespace paddle