layer_norm_op.cc 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/layer_norm_op.h"
C
chengduoZH 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
29 30 31 32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"),
                   "Output(Y) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mean"),
                   "Output(Mean) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Variance"),
                   "Output(Variance) of LayerNormOp should not be null.");
C
chengduoZH 已提交
37

C
chengduoZH 已提交
38 39 40
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
    PADDLE_ENFORCE_LT(begin_norm_axis, x_dim.size(),
C
chengduoZH 已提交
41
                      "'begin_norm_axis' must be less than the rank of X.");
C
chengduoZH 已提交
42 43 44

    auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
45
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
46 47 48 49 50 51 52 53
    if (ctx->HasInput("Scale")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], right);
    }
    if (ctx->HasInput("Bias")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], right);
    }
C
chengduoZH 已提交
54

C
chengduoZH 已提交
55
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
56 57
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
58 59 60 61 62 63
    ctx->ShareLoD("X", "Y");
  }
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
64
  void Make() override {
Y
yuyang18 已提交
65
    AddInput("X", "The input tensor.");
C
chengduoZH 已提交
66
    AddInput("Scale",
Y
yuyang18 已提交
67
             "(optional) Scale is a 1-dimensional tensor of size "
C
chengduoZH 已提交
68 69 70
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
C
chengduoZH 已提交
71
    AddInput("Bias",
Y
yuyang18 已提交
72
             "(optional) Bias is a 1-dimensional tensor of size "
C
chengduoZH 已提交
73 74 75
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
Y
yuyang18 已提交
76 77 78
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Variance", "Variance of the current mini batch.")
C
chengduoZH 已提交
79 80 81
        .AsIntermediate();

    AddAttr<float>("epsilon",
Y
yuyang18 已提交
82
                   "Constant for numerical stability [default 1e-5].")
C
chengduoZH 已提交
83 84 85 86 87
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
C
chengduoZH 已提交
88
    AddAttr<int>("begin_norm_axis",
Y
yuyang18 已提交
89
                 "the axis of `begin_norm_axis ... Rank(X) - 1` will be "
C
chengduoZH 已提交
90
                 "normalized. `begin_norm_axis` splits the tensor(`X`) to a "
Y
yuyang18 已提交
91
                 "matrix [N,H]. [default 1].")
C
chengduoZH 已提交
92 93 94 95 96
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
                            "'begin_norm_axis' should be greater than zero.");
        });
C
chengduoZH 已提交
97 98

    AddComment(R"DOC(
Y
yuyang18 已提交
99 100 101 102 103 104 105 106
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
C
chengduoZH 已提交
107 108 109 110 111 112 113 114 115 116
)DOC");
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
C
chengduoZH 已提交
117 118 119 120 121 122 123 124
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Mean"),
                   "Input(Mean) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Variance"),
                   "Input(Variance) of LayerNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) of LayerNormOp should not be null.");
C
chengduoZH 已提交
125 126 127

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
128
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
129 130
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
131 132
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
133 134
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
135 136
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    return framework::OpKernelType(framework::ToDataType(t->type()),
                                   ctx.GetPlace());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
165
REGISTER_OPERATOR(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
166 167
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(layer_norm_grad, ops::LayerNormGradOp);
C
chengduoZH 已提交
168
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
169 170
    layer_norm, ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
171 172
REGISTER_OP_CPU_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
173 174
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, double>);