README.html 36.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Python Data Reader Design Doc &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
65
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
66 67 68 69 70 71 72 73 74 75 76 77
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
78
          <li><a href="/">Home</a></li>
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
111
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
112 113 114 115
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/ubuntu_install_cn.html">Ubuntu部署PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
116
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
141
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
142 143 144
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
145
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
146 147 148 149 150 151 152 153
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
154 155
</ul>
</li>
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Python Data Reader Design Doc</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="python-data-reader-design-doc">
<span id="python-data-reader-design-doc"></span><h1>Python Data Reader Design Doc<a class="headerlink" href="#python-data-reader-design-doc" title="永久链接至标题"></a></h1>
<p>At training and testing time, PaddlePaddle programs need to read data. To ease the users&#8217; work to write data reading code, we define that</p>
<ul class="simple">
<li>A <em>reader</em> is a function that reads data (from file, network, random number generator, etc) and yields data items.</li>
<li>A <em>reader creator</em> is a function that returns a reader function.</li>
<li>A <em>reader decorator</em> is a function, which accepts one or more readers, and returns a reader.</li>
<li>A <em>batch reader</em> is a function that reads data (from <em>reader</em>, file, network, random number generator, etc) and yields a batch of data items.</li>
</ul>
<p>and provide function which converts reader to batch reader, frequently used reader creators and reader decorators.</p>
<div class="section" id="data-reader-interface">
<span id="data-reader-interface"></span><h2>Data Reader Interface<a class="headerlink" href="#data-reader-interface" title="永久链接至标题"></a></h2>
<p>Indeed, <em>data reader</em> doesn&#8217;t have to be a function that reads and yields data items. It can be any function with no parameter that creates a iterable (anything can be used in <code class="docutils literal"><span class="pre">for</span> <span class="pre">x</span> <span class="pre">in</span> <span class="pre">iterable</span></code>):</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">iterable</span> <span class="o">=</span> <span class="n">data_reader</span><span class="p">()</span>
</pre></div>
</div>
<p>Element produced from the iterable should be a <strong>single</strong> entry of data, <strong>not</strong> a mini batch. That entry of data could be a single item, or a tuple of items. Item should be of <a class="reference external" href="http://www.paddlepaddle.org/doc/ui/data_provider/pydataprovider2.html?highlight=dense_vector#input-types">supported type</a> (e.g., numpy 1d array of float32, int, list of int)</p>
<p>An example implementation for single item data reader creator:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
<p>An example implementation for multiple item data reader creator:</p>
212
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image_and_label</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">label</span><span class="p">):</span>
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">),</span> <span class="n">label</span>
    <span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
</div>
<div class="section" id="batch-reader-interface">
<span id="batch-reader-interface"></span><h2>Batch Reader Interface<a class="headerlink" href="#batch-reader-interface" title="永久链接至标题"></a></h2>
<p><em>batch reader</em> can be any function with no parameter that creates a iterable (anything can be used in <code class="docutils literal"><span class="pre">for</span> <span class="pre">x</span> <span class="pre">in</span> <span class="pre">iterable</span></code>). The output of the iterable should be a batch (list) of data items. Each item inside the list must be a tuple.</p>
<p>Here are valid outputs:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># a mini batch of three data items. Each data item consist three columns of data, each of which is 1.</span>
<span class="p">[(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span>
<span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">)]</span>

<span class="c1"># a mini batch of three data items, each data item is a list (single column).</span>
<span class="p">[([</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],),</span>
<span class="p">([</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">],),</span>
<span class="p">([</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">],),</span>
</pre></div>
</div>
<p>Please note that each item inside the list must be a tuple, below is an invalid output:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span> <span class="c1"># wrong, [1,1,1] needs to be inside a tuple: ([1,1,1],).</span>
 <span class="c1"># Otherwise it&#39;s ambiguous whether [1,1,1] means a single column of data [1, 1, 1],</span>
 <span class="c1"># or three column of datas, each of which is 1.</span>
<span class="p">[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span>
<span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">],</span>
<span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">]]</span>
</pre></div>
</div>
<p>It&#8217;s easy to convert from reader to batch reader:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">mnist_train</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>
<span class="n">mnist_train_batch_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">mnist_train</span><span class="p">,</span> <span class="mi">128</span><span class="p">)</span>
</pre></div>
</div>
<p>Also easy to create custom batch reader:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">custom_batch_reader</span><span class="p">():</span>
    <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
        <span class="n">batch</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="mi">128</span><span class="p">):</span>
            <span class="n">batch</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">28</span><span class="o">*</span><span class="mi">28</span><span class="p">),))</span> <span class="c1"># note that it&#39;s a tuple being appended.</span>
        <span class="k">yield</span> <span class="n">batch</span>

<span class="n">mnist_random_image_batch_reader</span> <span class="o">=</span> <span class="n">custom_batch_reader</span>
</pre></div>
</div>
</div>
<div class="section" id="usage">
<span id="usage"></span><h2>Usage<a class="headerlink" href="#usage" title="永久链接至标题"></a></h2>
<p>batch reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into <code class="docutils literal"><span class="pre">paddle.train</span></code>:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># two data layer is created:</span>
<span class="n">image_layer</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;image&quot;</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
<span class="n">label_layer</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;label&quot;</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>

<span class="c1"># ...</span>
<span class="n">batch_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="mi">128</span><span class="p">)</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">batch_reader</span><span class="p">,</span> <span class="p">{</span><span class="s2">&quot;image&quot;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;label&quot;</span><span class="p">:</span><span class="mi">1</span><span class="p">},</span> <span class="mi">128</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="data-reader-decorator">
<span id="data-reader-decorator"></span><h2>Data Reader Decorator<a class="headerlink" href="#data-reader-decorator" title="永久链接至标题"></a></h2>
<p><em>Data reader decorator</em> takes a single or multiple data reader, returns a new data reader. It is similar to a <a class="reference external" href="https://wiki.python.org/moin/PythonDecorators">python decorator</a>, but it does not use <code class="docutils literal"><span class="pre">&#64;</span></code> syntax.</p>
<p>Since we have a strict interface for data readers (no parameter, return a single data item). Data reader can be used flexiable via data reader decorators. Following are a few examples:</p>
<div class="section" id="prefetch-data">
<span id="prefetch-data"></span><h3>Prefetch Data<a class="headerlink" href="#prefetch-data" title="永久链接至标题"></a></h3>
<p>Since reading data may take time and training can not proceed without data. It is generally a good idea to prefetch data.</p>
<p>Use <code class="docutils literal"><span class="pre">paddle.reader.buffered</span></code> to prefetch data:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">buffered_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">buffered</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="mi">100</span><span class="p">)</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">buffered_reader</span></code> will try to buffer (prefetch) <code class="docutils literal"><span class="pre">100</span></code> data entries.</p>
</div>
<div class="section" id="compose-multiple-data-readers">
<span id="compose-multiple-data-readers"></span><h3>Compose Multiple Data Readers<a class="headerlink" href="#compose-multiple-data-readers" title="永久链接至标题"></a></h3>
<p>For example, we want to use a source of real images (reusing mnist dataset), and a source of random images as input for <a class="reference external" href="https://arxiv.org/abs/1406.2661">Generative Adversarial Networks</a>.</p>
<p>We can do:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">reader</span>

<span class="k">def</span> <span class="nf">reader_creator_bool</span><span class="p">(</span><span class="n">t</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">:</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">t</span>
    <span class="k">return</span> <span class="n">reader</span>

<span class="n">true_reader</span> <span class="o">=</span> <span class="n">reader_creator_bool</span><span class="p">(</span><span class="bp">True</span><span class="p">)</span>
<span class="n">false_reader</span> <span class="o">=</span> <span class="n">reader_creator_bool</span><span class="p">(</span><span class="bp">False</span><span class="p">)</span>

<span class="n">reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">compose</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="n">data_reader_creator_random_image</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">true_reader</span><span class="p">,</span> <span class="n">false_reader</span><span class="p">)</span>
<span class="c1"># Skipped 1 because paddle.dataset.mnist.train() produces two items per data entry.</span>
<span class="c1"># And we don&#39;t care second item at this time.</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">reader</span><span class="p">,</span> <span class="mi">128</span><span class="p">),</span> <span class="p">{</span><span class="s2">&quot;true_image&quot;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;fake_image&quot;</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span> <span class="s2">&quot;true_label&quot;</span><span class="p">:</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;false_label&quot;</span><span class="p">:</span> <span class="mi">4</span><span class="p">},</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="shuffle">
<span id="shuffle"></span><h3>Shuffle<a class="headerlink" href="#shuffle" title="永久链接至标题"></a></h3>
<p>Given shuffle buffer size <code class="docutils literal"><span class="pre">n</span></code>, <code class="docutils literal"><span class="pre">paddle.reader.shuffle</span></code> will return a data reader that buffers <code class="docutils literal"><span class="pre">n</span></code> data entries and shuffle them before a data entry is read.</p>
<p>Example:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="mi">512</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="q-a">
<span id="q-a"></span><h2>Q &amp; A<a class="headerlink" href="#q-a" title="永久链接至标题"></a></h2>
<div class="section" id="why-reader-return-only-a-single-entry-but-not-a-mini-batch">
<span id="why-reader-return-only-a-single-entry-but-not-a-mini-batch"></span><h3>Why reader return only a single entry, but not a mini batch?<a class="headerlink" href="#why-reader-return-only-a-single-entry-but-not-a-mini-batch" title="永久链接至标题"></a></h3>
<p>Always returning a single entry make reusing existing data readers much easier (e.g., if existing reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2).</p>
<p>We provide function <code class="docutils literal"><span class="pre">paddle.batch</span></code> to turn (single entry) reader into batch reader.</p>
</div>
<div class="section" id="why-do-we-need-batch-reader-isn-t-train-take-reader-and-batch-size-as-arguments-sufficient">
<span id="why-do-we-need-batch-reader-isn-t-train-take-reader-and-batch-size-as-arguments-sufficient"></span><h3>Why do we need batch reader, isn&#8217;t train take reader and batch_size as arguments sufficient?<a class="headerlink" href="#why-do-we-need-batch-reader-isn-t-train-take-reader-and-batch-size-as-arguments-sufficient" title="永久链接至标题"></a></h3>
<p>In most of the case, train taking reader and batch_size as arguments would be sufficent. However sometimes user want to customize order of data entries inside a mini batch. Or even change batch size dynamically.</p>
</div>
<div class="section" id="why-use-a-dictionary-but-not-a-list-to-provide-mapping">
<span id="why-use-a-dictionary-but-not-a-list-to-provide-mapping"></span><h3>Why use a dictionary but not a list to provide mapping?<a class="headerlink" href="#why-use-a-dictionary-but-not-a-list-to-provide-mapping" title="永久链接至标题"></a></h3>
<p>We decided to use dictionary (<code class="docutils literal"><span class="pre">{&quot;image&quot;:0,</span> <span class="pre">&quot;label&quot;:1}</span></code>) instead of list (<code class="docutils literal"><span class="pre">[&quot;image&quot;,</span> <span class="pre">&quot;label&quot;]</span></code>) is because that user can easily resue item (e.g., using <code class="docutils literal"><span class="pre">{&quot;image_a&quot;:0,</span> <span class="pre">&quot;image_b&quot;:0,</span> <span class="pre">&quot;label&quot;:1}</span></code>) or skip item (e.g., using <code class="docutils literal"><span class="pre">{&quot;image_a&quot;:0,</span> <span class="pre">&quot;label&quot;:2}</span></code>).</p>
</div>
<div class="section" id="how-to-create-custom-data-reader-creator">
<span id="how-to-create-custom-data-reader-creator"></span><h3>How to create custom data reader creator<a class="headerlink" href="#how-to-create-custom-data-reader-creator" title="永久链接至标题"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">image_reader_creator</span><span class="p">(</span><span class="n">image_path</span><span class="p">,</span> <span class="n">label_path</span><span class="p">,</span> <span class="n">n</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="n">f</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="n">image_path</span><span class="p">)</span>
        <span class="n">l</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="n">label_path</span><span class="p">)</span>
        <span class="n">images</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">fromfile</span><span class="p">(</span>
            <span class="n">f</span><span class="p">,</span> <span class="s1">&#39;ubyte&#39;</span><span class="p">,</span> <span class="n">count</span><span class="o">=</span><span class="n">n</span> <span class="o">*</span> <span class="mi">28</span> <span class="o">*</span> <span class="mi">28</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="mi">28</span> <span class="o">*</span> <span class="mi">28</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
        <span class="n">images</span> <span class="o">=</span> <span class="n">images</span> <span class="o">/</span> <span class="mf">255.0</span> <span class="o">*</span> <span class="mf">2.0</span> <span class="o">-</span> <span class="mf">1.0</span>
        <span class="n">labels</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">fromfile</span><span class="p">(</span><span class="n">l</span><span class="p">,</span> <span class="s1">&#39;ubyte&#39;</span><span class="p">,</span> <span class="n">count</span><span class="o">=</span><span class="n">n</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">&quot;int&quot;</span><span class="p">)</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
            <span class="k">yield</span> <span class="n">images</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="p">:],</span> <span class="n">labels</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="c1"># a single entry of data is created each time</span>
        <span class="n">f</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
        <span class="n">l</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
    <span class="k">return</span> <span class="n">reader</span>

<span class="c1"># images_reader_creator creates a reader</span>
<span class="n">reader</span> <span class="o">=</span> <span class="n">image_reader_creator</span><span class="p">(</span><span class="s2">&quot;/path/to/image_file&quot;</span><span class="p">,</span> <span class="s2">&quot;/path/to/label_file&quot;</span><span class="p">,</span> <span class="mi">1024</span><span class="p">)</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">reader</span><span class="p">,</span> <span class="mi">128</span><span class="p">),</span> <span class="p">{</span><span class="s2">&quot;image&quot;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;label&quot;</span><span class="p">:</span><span class="mi">1</span><span class="p">},</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="how-is-paddle-train-implemented">
<span id="how-is-paddle-train-implemented"></span><h3>How is <code class="docutils literal"><span class="pre">paddle.train</span></code> implemented<a class="headerlink" href="#how-is-paddle-train-implemented" title="永久链接至标题"></a></h3>
<p>An example implementation of paddle.train could be:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="n">batch_reader</span><span class="p">,</span> <span class="n">mapping</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">,</span> <span class="n">total_pass</span><span class="p">):</span>
    <span class="k">for</span> <span class="n">pass_idx</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">total_pass</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">mini_batch</span> <span class="ow">in</span> <span class="n">batch_reader</span><span class="p">():</span> <span class="c1"># this loop will never end in online learning.</span>
            <span class="n">do_forward_backward</span><span class="p">(</span><span class="n">mini_batch</span><span class="p">,</span> <span class="n">mapping</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
407 408
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
409 410 411 412 413 414
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
415
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
416 417 418 419 420 421 422 423 424 425 426 427 428
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
429
</html>