conv_handler.h 27.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/backends/onednn/onednn_helper.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/expect.h"
20
#include "paddle/phi/core/macros.h"
21
#include "paddle/phi/core/tensor_utils.h"
22
#include "paddle/phi/kernels/cpu/conv_util.h"
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
namespace phi {
namespace onednn {

inline funcs::OneDNNMemoryFormat GetWeightsFormat(int groups, bool is_conv3d) {
  if (is_conv3d) {
    return (groups == 1) ? funcs::OneDNNMemoryFormat::oidhw
                         : funcs::OneDNNMemoryFormat::goidhw;
  } else {
    return (groups == 1) ? funcs::OneDNNMemoryFormat::oihw
                         : funcs::OneDNNMemoryFormat::goihw;
  }
}

template <typename T, typename K, typename T_out>
class ConvOneDNNHandlerT
    : public funcs::OneDNNHandlerT<T,
                                   dnnl::convolution_forward,
                                   dnnl::convolution_backward_data,
                                   dnnl::convolution_backward_weights> {
 public:
  ConvOneDNNHandlerT(const OneDNNContext& dev_ctx,
45
                     const dnnl::engine onednn_engine,
46 47 48 49 50 51 52 53 54
                     Place cpu_place,
                     const phi::DenseTensor* input,
                     const phi::DenseTensor* filter,
                     const phi::DenseTensor* bias,
                     const std::vector<int>& strides_in,
                     const std::vector<int>& paddings_in,
                     const std::string& padding_algorithm,
                     const std::vector<int>& dilations_in,
                     int groups,
55
                     const std::string& data_format UNUSED,
56 57 58 59 60 61 62 63 64 65 66 67
                     bool is_test,
                     bool is_BFLOAT16,
                     const std::string& fuse_activation,
                     bool fuse_residual_conn,
                     bool force_fp32_output,
                     phi::DenseTensor* output,
                     const std::string& unique_name)
      : funcs::OneDNNHandlerT<T,
                              dnnl::convolution_forward,
                              dnnl::convolution_backward_data,
                              dnnl::convolution_backward_weights>(
            dev_ctx,
68
            onednn_engine,
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
            cpu_place,
            funcs::CreateKey(
                dev_ctx, phi::vectorize(input->dims()), unique_name)) {
    if (unlikely(!this->isCached())) {
      PADDLE_ENFORCE_EQ(
          input->layout(),
          DataLayout::ONEDNN,
          phi::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
              DataLayout::ONEDNN,
              input->layout()));

      PADDLE_ENFORCE_EQ(
          filter->layout(),
          DataLayout::ONEDNN,
          phi::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
              DataLayout::ONEDNN,
              filter->layout()));

      PADDLE_ENFORCE_GE(
          input->dims().size(),
          4,
          phi::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(),
          5,
          phi::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));

      PADDLE_ENFORCE_GE(
          filter->dims().size(),
          4,
          phi::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(),
          5,
          phi::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));

      if (bias) {
        PADDLE_ENFORCE_EQ(
            bias->layout(),
            DataLayout::ONEDNN,
            phi::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
                DataLayout::ONEDNN,
                bias->layout()));

        PADDLE_ENFORCE_EQ(
            bias->dims().size(),
            1,
            phi::errors::InvalidArgument("Bias must only have 1 dimension, "
                                         "i.e. X, but got dimension = %d .",
                                         bias->dims().size()));
      }
      const auto input_dims = input->dims();
      const auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
      const auto ksize = phi::vectorize(filter_data_dims);
      std::vector<int64_t> strides(begin(strides_in), end(strides_in));
      std::vector<int64_t> paddings(begin(paddings_in), end(paddings_in));
      std::vector<int64_t> dilations(begin(dilations_in), end(dilations_in));
      UpdatePaddingAndDilation(
          &paddings, &dilations, padding_algorithm, data_dims, strides, ksize);
      std::transform(
          dilations.begin(), dilations.end(), dilations.begin(), [](int64_t i) {
            return i - 1;
          });

      const auto src_tz = phi::vectorize(input->dims());

      auto weights_tz = phi::vectorize(filter->dims());
      funcs::GetGroupConvWeightsTz(weights_tz, groups);

      const auto dst_tz = phi::vectorize(output->dims());

      const dnnl::memory::dims stride_dims = strides;
159
      const auto onednn_paddings = funcs::ToOneDNNPadding(paddings);
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
      const dnnl::memory::dims dilations_dims = dilations;
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
      auto chosen_memory_format = funcs::OneDNNMemoryFormat::any;
      auto data_type = dnnl::memory::data_type::f32;
      if (is_BFLOAT16 || std::is_same<T_out, dtype::bfloat16>::value) {
        data_type = dnnl::memory::data_type::bf16;
      }

      dnnl::memory::desc src_md, weights_md;
      if (funcs::is_int8<T>()) {
        src_md = funcs::OneDNNMemDesc(src_tz,
                                      funcs::ToOneDNNDataType(input->dtype()),
                                      chosen_memory_format);
        weights_md = funcs::OneDNNMemDesc(
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
      } else {
        src_md = funcs::OneDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = funcs::OneDNNMemDesc(
            weights_tz, data_type, funcs::OneDNNMemoryFormat::any);
      }

      const auto dst_md = funcs::OneDNNMemDesc(
          dst_tz, funcs::OneDNNGetDataType<T_out>(), chosen_memory_format);
186
      const auto fwd_prop_kind = dnnl::prop_kind::forward_inference;
187 188 189 190 191 192 193 194
      const dnnl::primitive_attr conv_attr = CreateConvAttrs(filter,
                                                             groups,
                                                             force_fp32_output,
                                                             fuse_residual_conn,
                                                             fuse_activation);

      if (bias) {
        auto bias_tz = phi::vectorize(bias->dims());
195 196 197 198
        dnnl::memory::desc bias_md =
            funcs::OneDNNMemDesc(bias_tz,
                                 dnnl::memory::data_type::f32,
                                 funcs::OneDNNMemoryFormat::x);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

        this->AcquireForwardPrimitiveDescriptor(
            conv_attr,
            fwd_prop_kind,
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            bias_md,
            dst_md,
            stride_dims,
            dilations_dims,
            onednn_paddings[0],
            onednn_paddings[1]);
      } else {
        this->AcquireForwardPrimitiveDescriptor(
            conv_attr,
            fwd_prop_kind,
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            dst_md,
            stride_dims,
            dilations_dims,
            onednn_paddings[0],
            onednn_paddings[1]);
      }
    }
  }

  ConvOneDNNHandlerT(const OneDNNContext& dev_ctx,
                     Place cpu_place,
                     const phi::DenseTensor* in,
                     const phi::DenseTensor* filter,
                     const phi::DenseTensor* bias,
                     const phi::DenseTensor* out_grad,
                     const std::vector<int>& strides_in,
                     const std::vector<int>& paddings_in,
                     const std::string& padding_algorithm,
                     const std::vector<int>& dilations_in,
                     int groups,
239
                     const std::string& data_format UNUSED,
240
                     bool is_test,
241 242
                     phi::DenseTensor* filter_grad UNUSED,
                     phi::DenseTensor* in_x_grad UNUSED,
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
                     const std::string& unique_name)
      : funcs::OneDNNHandlerT<T,
                              dnnl::convolution_forward,
                              dnnl::convolution_backward_data,
                              dnnl::convolution_backward_weights>(
            dev_ctx,
            dev_ctx.GetEngine(),
            cpu_place,
            funcs::CreateKey(
                dev_ctx, phi::vectorize(in->dims()), unique_name)) {
    if (unlikely(!this->isBwdCached())) {
      PADDLE_ENFORCE_EQ(
          in->layout(),
          DataLayout::ONEDNN,
          phi::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
              DataLayout::ONEDNN,
              in->layout()));

      PADDLE_ENFORCE_EQ(
          filter->layout(),
          DataLayout::ONEDNN,
          phi::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
              DataLayout::ONEDNN,
              filter->layout()));

      PADDLE_ENFORCE_EQ(
          out_grad->layout(),
          DataLayout::ONEDNN,
          phi::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
              DataLayout::ONEDNN,
              out_grad->layout()));

      PADDLE_ENFORCE_EQ(
          is_test,
          false,
          phi::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int64_t> strides(begin(strides_in), end(strides_in));
      std::vector<int64_t> paddings(begin(paddings_in), end(paddings_in));
      std::vector<int64_t> dilations(begin(dilations_in), end(dilations_in));

      auto input_dims = in->dims();
      auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = phi::vectorize(filter_data_dims);

      UpdatePaddingAndDilation(
          &paddings, &dilations, padding_algorithm, data_dims, strides, ksize);

      auto src_tz = phi::vectorize(in->dims());
      auto weights_tz = phi::vectorize(filter->dims());

      int g = std::max(groups, 1);
      funcs::GetGroupConvWeightsTz(weights_tz, g);
      auto dst_tz = phi::vectorize(out_grad->dims());

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = funcs::OneDNNMemoryFormat::any;
      const auto weights_format = funcs::OneDNNMemoryFormat::any;

      auto src_md = funcs::OneDNNMemDesc(
          src_tz, funcs::OneDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = funcs::OneDNNMemDesc(
          dst_tz, funcs::OneDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = funcs::OneDNNMemDesc(
          src_tz, funcs::OneDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = funcs::OneDNNMemDesc(
          weights_tz, funcs::OneDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = funcs::OneDNNMemDesc(
          weights_tz, funcs::OneDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = funcs::OneDNNMemDesc(
          dst_tz, funcs::OneDNNGetDataType<T>(), chosen_memory_format);

325
      auto onednn_paddings = funcs::ToOneDNNPadding(paddings);
326 327 328 329 330 331 332 333 334 335 336
      std::transform(
          dilations.begin(), dilations.end(), dilations.begin(), [](int64_t i) {
            return i - 1;
          });
      const dnnl::memory::dims dilations_dims = dilations;

      const dnnl::memory::dims stride_dims = strides;
      // Recreating FWD PD. For training there are no post ops in convolution
      dnnl::primitive_attr conv_attr;
      if (bias) {
        auto bias_tz = phi::vectorize(bias->dims());
337 338 339 340
        dnnl::memory::desc bias_md =
            funcs::OneDNNMemDesc(bias_tz,
                                 dnnl::memory::data_type::f32,
                                 funcs::OneDNNMemoryFormat::x);
341 342 343

        this->AcquireForwardPrimitiveDescriptor(
            conv_attr,
344
            dnnl::prop_kind::forward_inference,
345 346 347 348 349 350 351 352 353 354 355 356
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            bias_md,
            dst_md,
            stride_dims,
            dilations_dims,
            onednn_paddings[0],
            onednn_paddings[1]);
      } else {
        this->AcquireForwardPrimitiveDescriptor(
            conv_attr,
357
            dnnl::prop_kind::forward_inference,
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            dst_md,
            stride_dims,
            dilations_dims,
            onednn_paddings[0],
            onednn_paddings[1]);
      }

      this->AcquireBackwardPrimitiveDescriptor(
          dnnl::algorithm::convolution_direct,
          diff_src_md,
          weights_md,
          diff_dst_md,
          strides,
          dilations_dims,
          onednn_paddings[0],
          onednn_paddings[1]);

      this->AcquireBackwardWeightsPrimitiveDescriptor(
          dnnl::algorithm::convolution_direct,
          src_md,
          diff_weights_md,
          diff_dst_md,
          strides,
          dilations_dims,
          onednn_paddings[0],
          onednn_paddings[1]);
    }
  }

  dnnl::primitive_attr CreateConvAttrs(const DenseTensor* filter,
                                       int groups,
                                       bool force_fp32_output,
                                       bool fuse_residual_conn,
                                       const std::string& fuse_activation) {
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;

    float sum_scale = 1.0f;
    std::vector<float> output_shift_scale;
    if (funcs::is_int8<T>()) {
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
      conv_attr.set_scales_mask(DNNL_ARG_SRC, 0);

      auto wei_scales = ConvertToDNNLScales("Scale_weights");
      // By oneDNN API definition:
      // - For per-tensor quantization: the mask should be 0
      // - For per-dimension quantization: the mask should be 1 <<
      // dimension_index Here, wei_scales.size() != 1 means per-channel
      // quantization, the channel index in oneDNN is always 0, so we use mask =
      // 1 << 0. If the conv is group, the weights shape will be [g, oc/g, ic,
      // h, w], we need to do scaling along both group dim and oc dim, so the
      // mask = (1 << 0) + (1 << 1).
      int mask = wei_scales.size() == 1
                     ? 0
                     : (groups > 1 ? ((1 << 0) + (1 << 1)) : 1 << 0);
      conv_attr.set_scales_mask(DNNL_ARG_WEIGHTS, mask);

      if (!force_fp32_output) {
        conv_attr.set_scales_mask(DNNL_ARG_DST, 0);
419 420
      }

421 422
      auto psum_scales = ConvertToDNNLScales("Scale_in_eltwise");
      sum_scale = psum_scales[0];
423 424 425 426 427 428 429 430 431 432 433
    }

    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }

434
    funcs::AppendActivation(this->dev_ctx_, post_operations);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<dnnl::memory>
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const phi::DenseTensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = phi::vectorize(filter->dims());
    funcs::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md =
        funcs::OneDNNMemDesc(weights_tz,
                             funcs::OneDNNGetDataType<K>(),
                             GetWeightsFormat(groups, is_conv3d));

    return this->AcquireMemoryWithReorder(user_src_md,
                                          this->bwd_pd_->weights_desc(),
                                          funcs::to_void_cast<K>(filter_data),
                                          "@weights_mem_d_p",
                                          false);
  }

  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
      const phi::DenseTensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(input,
                                                   "@src_mem_p_user",
                                                   "@src_mem_p_target",
                                                   "@src_mem_p",
                                                   this->fwd_pd_->src_desc());
  }

  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
      const phi::DenseTensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(input,
                                                   "@src_mem_w_p_user",
                                                   "@src_mem_w_p_target",
                                                   "@src_mem_w_p",
                                                   this->bwd_w_pd_->src_desc());
  }

  std::shared_ptr<dnnl::memory>
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const phi::DenseTensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad,
        "@diff_dst_mem_w_p_user",
        "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p",
        this->bwd_w_pd_->diff_dst_desc());
  }

  std::shared_ptr<dnnl::memory>
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const phi::DenseTensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad,
        "@diff_dst_mem_p_user",
        "@diff_dst_mem_p_target",
        "@diff_dst_mem_p",
        this->bwd_pd_->diff_dst_desc());
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
      const phi::DenseTensor* in_mem,
      const char* key_mem_user,
      const char* key_mem_target,
      const char* key_mem,
      const dnnl::memory::desc& mem_md) {
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      return this->AcquireMemoryWithReorder(in_mem->mem_desc(),
                                            mem_md,
                                            funcs::to_void_cast<T>(in_mem_data),
                                            key_mem);
    } else {
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
      user_mem_p->set_data_handle(funcs::to_void_cast<T>(in_mem_data));
      if (user_mem_p != target_mem_p) {
        this->AcquireReorder(user_mem_p, target_mem_p);
      }
      return target_mem_p;
    }
  }

  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
      const phi::DenseTensor* filter,
      const int groups,
      const bool is_conv3d,
      const bool is_test,
      const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
    if (is_test && weights_mem_p) {
      return weights_mem_p;
    } else if (is_test) {
      const K* filter_data = filter->data<K>();
      auto weights_tz = phi::vectorize(filter->dims());
      funcs::GetGroupConvWeightsTz(weights_tz, groups);

      auto user_src_md =
          funcs::OneDNNMemDesc(weights_tz,
                               funcs::OneDNNGetDataType<K>(),
                               GetWeightsFormat(groups, is_conv3d));

      return this->AcquireMemoryWithReorder(user_src_md,
                                            this->fwd_pd_->weights_desc(),
                                            funcs::to_void_cast<K>(filter_data),
                                            "@weights_mem_p",
                                            is_test,
                                            {},
                                            scale_data,
                                            mask);
    } else {
      const T* filter_data = filter->data<T>();
      auto weights_tz = phi::vectorize(filter->dims());
      funcs::GetGroupConvWeightsTz(weights_tz, groups);

      auto user_src_md =
          funcs::OneDNNMemDesc(weights_tz,
                               funcs::OneDNNGetDataType<T>(),
                               GetWeightsFormat(groups, is_conv3d));

      return this->AcquireMemoryWithReorder(user_src_md,
                                            this->fwd_pd_->weights_desc(),
                                            funcs::to_void_cast<T>(filter_data),
                                            "@weights_mem_p",
                                            is_test,
                                            {},
                                            scale_data,
                                            mask);
    }
  }

  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
      const phi::DenseTensor* bias,
      const bool is_test,
      const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
    if (is_test && bias_mem_p) {
      return bias_mem_p;
    } else {
      // if K is int8 (weights are int8) then biases are int32
      using K_Bias = typename std::
          conditional<std::is_same<K, int8_t>::value, int32_t, K>::type;
      if (std::is_same<K_Bias, int32_t>::value &&
          bias->dtype() != phi::DataType::INT32) {
        LOG(ERROR) << "Bias should be of type int32 but is " << bias->dtype();
      }
      const K_Bias* bias_data = bias->data<K_Bias>();

      return this->AcquireMemoryWithReorder(
          bias->mem_desc(),
          this->fwd_pd_->bias_desc(),
          funcs::to_void_cast<K_Bias>(bias_data),
          "@bias_mem_p",
          is_test,
          {},
          scale_data,
          mask);
    }
  }

  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
      const phi::DenseTensor* residual_param) {
    void* residual_data =
609
        residual_param->dtype() == phi::CppTypeToDataType<T_out>::Type()
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
            ? funcs::to_void_cast<T_out>(residual_param->data<T_out>())
            : funcs::to_void_cast<T>(residual_param->data<T>());
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      return this->AcquireMemoryFromPrimitive(residual_param->mem_desc(),
                                              residual_data,
                                              "@user_residual_data_mem_p");
    }
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
      phi::DenseTensor* output, const phi::DenseTensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
626 627 628
    auto residual_memory_p = this->AcquireResidualMemory(residual_param);
    dst_memory_p = this->template AcquireDstMemory<T_out>(output);
    this->AcquireReorder(residual_memory_p, dst_memory_p);
629 630
    return dst_memory_p;
  }
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

  // Currently, 4 kind of onednn scales are supported: src scales, weight
  // scales, post-sum scales and dst scales. This function is used to convert
  // paddle scales to onednn scales
  std::vector<float> ConvertToDNNLScales(const std::string& attr_name) {
    std::vector<float> paddle_scales;
    // weight scales is vector but other scales are scalar
    if (attr_name == "Scale_weights") {
      paddle_scales =
          this->dev_ctx_.HasDnnAttr(attr_name)
              ? PADDLE_GET_CONST(std::vector<float>,
                                 this->dev_ctx_.GetDnnAttr(attr_name))
              : std::vector<float>{1.0f};
    } else {
      float scale =
          this->dev_ctx_.HasDnnAttr(attr_name)
              ? PADDLE_GET_CONST(float, this->dev_ctx_.GetDnnAttr(attr_name))
              : 1.0f;
      paddle_scales = std::vector<float>{scale};
    }

    size_t count = paddle_scales.size();
    std::vector<float> dnnl_scales(count);
#pragma omp parallel for if (count > 50)
    for (size_t i = 0; i < count; i++) {
      dnnl_scales[i] = 1.f / paddle_scales[i];
    }
    return dnnl_scales;
  }

  std::shared_ptr<dnnl::memory> AcquireScalesMemory(int dnnl_arg) {
    // <dnnl_arg, {cache_key_suffix, attr_name}>
    std::unordered_map<int, std::pair<std::string, std::string>> map = {
        {DNNL_ARG_SRC, {"@src_scales", "Scale_in"}},
        {DNNL_ARG_WEIGHTS, {"@wei_scales", "Scale_weights"}},
        {DNNL_ARG_DST, {"@dst_scales", "Scale_out"}},
    };

    std::string cache_key_suffix, attr_name;
    std::tie(cache_key_suffix, attr_name) = map.at(dnnl_arg);

    // first look up the cache
    auto dnnl_scales_mem = this->AcquireMemory(cache_key_suffix);

    if (!dnnl_scales_mem) {
      // cache miss, so construct scales memory from the paddle scales
      // attributes
      auto dnnl_scales = ConvertToDNNLScales(attr_name);
      dnnl::memory::desc dnnl_scales_md(
          {static_cast<int64_t>(dnnl_scales.size())},
          dnnl::memory::data_type::f32,
          dnnl::memory::format_tag::x);
      dnnl_scales_mem =
          std::make_shared<dnnl::memory>(dnnl_scales_md, this->engine_);
      memcpy(dnnl_scales_mem->get_data_handle(),
             dnnl_scales.data(),
             dnnl_scales.size() * sizeof(float));
      // cache the constructed memory
      this->CacheMemory(cache_key_suffix, dnnl_scales_mem);
    }

    return dnnl_scales_mem;
  }
694 695 696 697
};

}  // namespace onednn
}  // namespace phi