beam_search_decode_op.cc 7.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
16
#include <string>
17 18

#include "paddle/fluid/operators/beam_search_decode_op.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/platform/device_context.h"
Q
Qiao Longfei 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26
struct BeamSearchDecodeFunctor {
  BeamSearchDecodeFunctor(const LoDTensorArray& step_ids,
                          const LoDTensorArray& step_scores,
27 28 29 30 31
                          LoDTensor* id_tensor, LoDTensor* score_tensor,
                          size_t beam_size, int end_id)
      : beam_size_(beam_size),
        end_id_(end_id),
        step_ids_origin_(step_ids),
32
        step_scores_origin_(step_scores),
33
        id_tensor_(id_tensor),
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
        score_tensor_(score_tensor) {
    tensor_on_gpu_ = false;
    // First make a copy of GPU data on CPU
    if (platform::is_gpu_place(step_ids_origin_[0].place())) {
      tensor_on_gpu_ = true;
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(step_ids_origin_[0].place());
      // Copy all tensors in the input tensor array
      for (auto& step_id : step_ids_origin_) {
        framework::LoDTensor out;
        dev_ctx->Wait();
        framework::TensorCopy(step_id, platform::CPUPlace(), *dev_ctx, &out);
        dev_ctx->Wait();

        out.set_lod(step_id.lod());
        step_ids_.push_back(out);
      }
    }
    if (platform::is_gpu_place(step_scores_origin_[0].place())) {
      tensor_on_gpu_ = true;
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(step_scores_origin_[0].place());
      // Copy all tensors in the input tensor array
      for (auto& step_score : step_scores_origin_) {
        framework::LoDTensor out;
        dev_ctx->Wait();
        framework::TensorCopy(step_score, platform::CPUPlace(), *dev_ctx, &out);
        dev_ctx->Wait();

        out.set_lod(step_score.lod());
        step_scores_.push_back(out);
      }
    }
  }
70 71 72 73

  template <typename T>
  void operator()() const;

74
  bool tensor_on_gpu_;
75 76
  size_t beam_size_;
  int end_id_;
77 78 79 80
  const LoDTensorArray& step_ids_origin_;
  const LoDTensorArray& step_scores_origin_;
  LoDTensorArray step_ids_ = LoDTensorArray();
  LoDTensorArray step_scores_ = LoDTensorArray();
81 82 83 84 85 86
  LoDTensor* id_tensor_;
  LoDTensor* score_tensor_;
};

template <typename T>
void BeamSearchDecodeFunctor::operator()() const {
87
  BeamSearchDecoder<T> beam_search_decoder(beam_size_, end_id_);
88 89
  // Check if the tensor is on GPU. If so, use the CPU copy instead
  if (tensor_on_gpu_) {
90 91 92 93
    // beam_search_decoder.PackAllSteps(step_ids_, step_scores_, id_tensor_,
    //                                  score_tensor_);
    beam_search_decoder.Backtrace(step_ids_, step_scores_, id_tensor_,
                                  score_tensor_);
94
  } else {
95 96 97 98
    // beam_search_decoder.PackAllSteps(step_ids_origin_, step_scores_origin_,
    //                                  id_tensor_, score_tensor_);
    beam_search_decoder.Backtrace(step_ids_origin_, step_scores_origin_,
                                  id_tensor_, score_tensor_);
99
  }
100 101 102 103 104 105 106
}

template <>
void BeamSearchDecodeFunctor::operator()<bool>() const {
  PADDLE_THROW("beam search decode op does not support bool!");
}

Q
Qiao Longfei 已提交
107 108 109 110 111 112 113
class BeamSearchDecodeOp : public framework::OperatorBase {
 public:
  BeamSearchDecodeOp(const std::string& type,
                     const framework::VariableNameMap& inputs,
                     const framework::VariableNameMap& outputs,
                     const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
114 115 116 117

 private:
  void RunImpl(const framework::Scope& scope,
               const platform::Place& dev_place) const override {
Y
Yu Yang 已提交
118 119
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
120

Q
Qiao Longfei 已提交
121
    framework::ExecutionContext ctx(*this, scope, dev_ctx);
122

Q
Qiao Longfei 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135
    const LoDTensorArray* ids = ctx.Input<LoDTensorArray>("Ids");
    const LoDTensorArray* scores = ctx.Input<LoDTensorArray>("Scores");
    const size_t step_num = ids->size();
    PADDLE_ENFORCE_GT(step_num, 0UL,
                      "beam search steps should be larger than 0");
    const size_t source_num = ids->at(0).lod().at(0).size() - 1;
    PADDLE_ENFORCE_GT(source_num, 0UL, "source num should be larger than 0");

    for (size_t i = 0; i < step_num; ++i) {
      PADDLE_ENFORCE_EQ(ids->at(i).lod().size(), 2UL,
                        "Level of LodTensor should be 2");
    }

136 137 138
    size_t beam_size = ctx.Attr<int>("beam_size");
    int end_id = ctx.Attr<int>("end_id");

Q
Qiao Longfei 已提交
139 140 141 142
    // prepare output
    LoDTensor* sentenceIds = ctx.Output<LoDTensor>("SentenceIds");
    LoDTensor* sentenceScores = ctx.Output<LoDTensor>("SentenceScores");

143 144
    framework::VisitDataType(
        framework::ToDataType(scores->at(0).type()),
145 146
        BeamSearchDecodeFunctor(*ids, *scores, sentenceIds, sentenceScores,
                                beam_size, end_id));
Q
Qiao Longfei 已提交
147 148 149 150 151
  }
};

class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
152
  void Make() override {
Q
Qiao Longfei 已提交
153 154 155 156 157 158 159 160 161 162 163 164
    AddInput("Ids",
             "(LodTensorArray)"
             "score of the candidate words in each step");
    AddInput("Scores",
             "(LodTensorArray)"
             "score of the candidate words in each step");
    AddOutput("SentenceIds",
              "(LodTensor)"
              "All possible result sentences of word ids");
    AddOutput("SentenceScores",
              "(LodTensor)"
              "All possible result sentences of word scores");
165 166 167
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");
Q
Qiao Longfei 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    AddComment(R"DOC(
Pack the result of Beam search op into SentenceIds and SentenceScores.
)DOC");
  }
};

class BeamSearchDecodeInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* context) const override {
    PADDLE_ENFORCE(context->HasInput("Ids"),
                   "BeamSearchDecodeOp must has input Ids");
    PADDLE_ENFORCE(context->HasInput("Scores"),
                   "BeamSearchDecodeOp must has input Scores");
    PADDLE_ENFORCE(context->HasOutput("SentenceIds"),
                   "BeamSearchDecodeOp must has output SentenceIds");
    PADDLE_ENFORCE(context->HasOutput("SentenceScores"),
                   "BeamSearchDecodeOp must has output SentenceScores");
  }
};

class BeamSearchDecodeInferVarType : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
190 191
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
Q
Qiao Longfei 已提交
192
    for (auto& o : op_desc.Output("SentenceIds")) {
193 194
      auto& sentence_ids = block->FindRecursiveOrCreateVar(o);
      sentence_ids.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
195 196
    }
    for (auto& o : op_desc.Output("SentenceScores")) {
197 198
      auto& sentence_scores = block->FindRecursiveOrCreateVar(o);
      sentence_scores.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
199 200 201 202 203 204 205 206 207 208 209 210
    }
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(beam_search_decode, paddle::operators::BeamSearchDecodeOp,
                  paddle::operators::BeamSearchDecodeOpProtoMaker,
                  paddle::operators::BeamSearchDecodeInferShape,
                  paddle::operators::BeamSearchDecodeInferVarType,
                  paddle::framework::EmptyGradOpMaker);