networks.html 62.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Networks &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../../genindex.html"/>
        <link rel="search" title="搜索" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../../index.html"/>
        <link rel="up" title="Model Configuration" href="../model_configs.html"/>
        <link rel="next" title="Parameter Attribute" href="attr.html"/>
        <link rel="prev" title="Pooling" href="pooling.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
118
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
119 120 121 122 123 124 125 126 127 128 129 130 131
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
132
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/build_cn.html">编译PaddlePaddle和运行单元测试</a></li>
133 134 135
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
136
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
137 138 139 140 141 142 143 144 145 146 147 148
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="../model_configs.html">模型配置</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="layer.html">Layers</a></li>
149
<li class="toctree-l3"><a class="reference internal" href="evaluators.html">Evaluators</a></li>
150 151 152 153 154 155 156 157 158 159
<li class="toctree-l3"><a class="reference internal" href="optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="pooling.html">Pooling</a></li>
<li class="toctree-l3 current"><a class="current reference internal" href="#">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">训练与应用</a></li>
</ul>
</li>
160 161 162 163 164 165 166 167
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../../index_cn.html">API</a> > </li>
      
        <li><a href="../model_configs.html">Model Configuration</a> > </li>
      
    <li>Networks</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="networks">
<h1>Networks<a class="headerlink" href="#networks" title="永久链接至标题"></a></h1>
<p>The v2.networks module contains pieces of neural network that combine multiple layers.</p>
<div class="section" id="nlp">
<h2>NLP<a class="headerlink" href="#nlp" title="永久链接至标题"></a></h2>
<div class="section" id="sequence-conv-pool">
<h3>sequence_conv_pool<a class="headerlink" href="#sequence-conv-pool" title="永久链接至标题"></a></h3>
208
<dl class="function">
209
<dt>
210
<code class="descclassname">paddle.v2.networks.</code><code class="descname">sequence_conv_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
211
<dd><p>Text convolution pooling group.</p>
212 213 214 215 216 217
<p>Text input =&gt; Context Projection =&gt; FC Layer =&gt; Pooling =&gt; Output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
218 219
<li><strong>name</strong> (<em>basestring</em>) &#8211; group name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
220 221 222
<li><strong>context_len</strong> (<em>int</em>) &#8211; context projection length. See
context_projection&#8217;s document.</li>
<li><strong>hidden_size</strong> (<em>int</em>) &#8211; FC Layer size.</li>
223
<li><strong>context_start</strong> (<em>int|None</em>) &#8211; context start position. See
224
context_projection&#8217;s context_start.</li>
225
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; pooling layer type. See pooling_layer&#8217;s document.</li>
226
<li><strong>context_proj_layer_name</strong> (<em>basestring</em>) &#8211; context projection layer name.
227
None if user don&#8217;t care.</li>
228 229
<li><strong>context_proj_param_attr</strong> (<em>ParameterAttribute|None</em>) &#8211; padding parameter attribute of context projection layer.
If false, it means padding always be zero.</li>
230
<li><strong>fc_layer_name</strong> (<em>basestring</em>) &#8211; fc layer name. None if user don&#8217;t care.</li>
231 232 233 234 235
<li><strong>fc_param_attr</strong> (<em>ParameterAttribute|None</em>) &#8211; fc layer parameter attribute. None if user don&#8217;t care.</li>
<li><strong>fc_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; fc bias parameter attribute. False if no bias,
None if user don&#8217;t care.</li>
<li><strong>fc_act</strong> (<em>BaseActivation</em>) &#8211; fc layer activation type. None means tanh.</li>
<li><strong>pool_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; pooling layer bias attr. False if no bias.
236
None if user don&#8217;t care.</li>
237 238 239
<li><strong>fc_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; fc layer extra attribute.</li>
<li><strong>context_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; context projection layer extra attribute.</li>
<li><strong>pool_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; pooling layer extra attribute.</li>
240 241 242
</ul>
</td>
</tr>
243
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output.</p>
244 245
</td>
</tr>
246
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
247 248 249 250 251 252 253 254 255
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="text-conv-pool">
<span id="api-trainer-config-helpers-network-text-conv-pool"></span><h3>text_conv_pool<a class="headerlink" href="#text-conv-pool" title="永久链接至标题"></a></h3>
256
<dl class="function">
257
<dt>
258
<code class="descclassname">paddle.v2.networks.</code><code class="descname">text_conv_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
259
<dd><p>Text convolution pooling group.</p>
260 261 262 263 264 265
<p>Text input =&gt; Context Projection =&gt; FC Layer =&gt; Pooling =&gt; Output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
266 267
<li><strong>name</strong> (<em>basestring</em>) &#8211; group name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
268 269 270
<li><strong>context_len</strong> (<em>int</em>) &#8211; context projection length. See
context_projection&#8217;s document.</li>
<li><strong>hidden_size</strong> (<em>int</em>) &#8211; FC Layer size.</li>
271
<li><strong>context_start</strong> (<em>int|None</em>) &#8211; context start position. See
272
context_projection&#8217;s context_start.</li>
273
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; pooling layer type. See pooling_layer&#8217;s document.</li>
274
<li><strong>context_proj_layer_name</strong> (<em>basestring</em>) &#8211; context projection layer name.
275
None if user don&#8217;t care.</li>
276 277
<li><strong>context_proj_param_attr</strong> (<em>ParameterAttribute|None</em>) &#8211; padding parameter attribute of context projection layer.
If false, it means padding always be zero.</li>
278
<li><strong>fc_layer_name</strong> (<em>basestring</em>) &#8211; fc layer name. None if user don&#8217;t care.</li>
279 280 281 282 283
<li><strong>fc_param_attr</strong> (<em>ParameterAttribute|None</em>) &#8211; fc layer parameter attribute. None if user don&#8217;t care.</li>
<li><strong>fc_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; fc bias parameter attribute. False if no bias,
None if user don&#8217;t care.</li>
<li><strong>fc_act</strong> (<em>BaseActivation</em>) &#8211; fc layer activation type. None means tanh.</li>
<li><strong>pool_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; pooling layer bias attr. False if no bias.
284
None if user don&#8217;t care.</li>
285 286 287
<li><strong>fc_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; fc layer extra attribute.</li>
<li><strong>context_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; context projection layer extra attribute.</li>
<li><strong>pool_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; pooling layer extra attribute.</li>
288 289 290
</ul>
</td>
</tr>
291
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output.</p>
292 293
</td>
</tr>
294
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
295 296 297 298 299 300 301 302 303 304 305 306
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="images">
<h2>Images<a class="headerlink" href="#images" title="永久链接至标题"></a></h2>
<div class="section" id="img-conv-bn-pool">
<h3>img_conv_bn_pool<a class="headerlink" href="#img-conv-bn-pool" title="永久链接至标题"></a></h3>
307
<dl class="function">
308
<dt>
309
<code class="descclassname">paddle.v2.networks.</code><code class="descname">img_conv_bn_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
310
<dd><p>Convolution, batch normalization, pooling group.</p>
311
<p>Img input =&gt; Conv =&gt; BN =&gt; Pooling =&gt; Output.</p>
312 313 314 315 316
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
<li><strong>name</strong> (<em>basestring</em>) &#8211; group name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
<li><strong>filter_size</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>pool_size</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; see batch_norm_layer for details.</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_stride</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_padding</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_bias_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>num_channel</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>shared_bias</strong> (<em>bool</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_layer_attr</strong> (<em>ExtraLayerOutput</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>bn_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; see batch_norm_layer for details.</li>
<li><strong>bn_bias_attr</strong> (<em>ParameterAttribute</em>) &#8211; see batch_norm_layer for details.</li>
<li><strong>bn_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see batch_norm_layer for details.</li>
<li><strong>pool_stride</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_padding</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see img_pool_layer for details.</li>
338 339 340
</ul>
</td>
</tr>
341
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output</p>
342 343
</td>
</tr>
344
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
345 346 347 348 349 350 351 352 353
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="img-conv-group">
<h3>img_conv_group<a class="headerlink" href="#img-conv-group" title="永久链接至标题"></a></h3>
354
<dl class="function">
355
<dt>
356
<code class="descclassname">paddle.v2.networks.</code><code class="descname">img_conv_group</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
357 358 359 360 361 362
<dd><p>Image Convolution Group, Used for vgg net.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
363 364
<li><strong>conv_batchnorm_drop_rate</strong> (<em>list</em>) &#8211; if conv_with_batchnorm[i] is true,
conv_batchnorm_drop_rate[i] represents the drop rate of each batch norm.</li>
365 366
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
<li><strong>conv_num_filter</strong> (<em>list|tuple</em>) &#8211; list of output channels num.</li>
367 368 369 370 371
<li><strong>pool_size</strong> (<em>int</em>) &#8211; pooling filter size.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; input channels num.</li>
<li><strong>conv_padding</strong> (<em>int</em>) &#8211; convolution padding size.</li>
<li><strong>conv_filter_size</strong> (<em>int</em>) &#8211; convolution filter size.</li>
<li><strong>conv_act</strong> (<em>BaseActivation</em>) &#8211; activation funciton after convolution.</li>
372 373
<li><strong>conv_with_batchnorm</strong> (<em>list</em>) &#8211; if conv_with_batchnorm[i] is true,
there is a batch normalization operation after each convolution.</li>
374 375
<li><strong>pool_stride</strong> (<em>int</em>) &#8211; pooling stride size.</li>
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; pooling type.</li>
376
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; param attribute of convolution layer,
377
None means default attribute.</li>
378 379 380
</ul>
</td>
</tr>
381
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output</p>
382 383
</td>
</tr>
384
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
385 386 387 388 389 390 391 392 393
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-img-conv-pool">
<span id="api-trainer-config-helpers-network-simple-img-conv-pool"></span><h3>simple_img_conv_pool<a class="headerlink" href="#simple-img-conv-pool" title="永久链接至标题"></a></h3>
394
<dl class="function">
395
<dt>
396
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_img_conv_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
397
<dd><p>Simple image convolution and pooling group.</p>
398
<p>Img input =&gt; Conv =&gt; Pooling =&gt; Output.</p>
399 400 401 402 403
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
<li><strong>name</strong> (<em>basestring</em>) &#8211; group name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
<li><strong>filter_size</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>pool_size</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_stride</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_padding</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>num_channel</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>shared_bias</strong> (<em>bool</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>pool_stride</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_padding</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see img_pool_layer for details.</li>
422 423 424
</ul>
</td>
</tr>
425
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output</p>
426 427
</td>
</tr>
428
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
429 430 431 432 433 434
</td>
</tr>
</tbody>
</table>
</dd></dl>

435 436 437
</div>
<div class="section" id="small-vgg">
<h3>small_vgg<a class="headerlink" href="#small-vgg" title="永久链接至标题"></a></h3>
438 439 440
</div>
<div class="section" id="vgg-16-network">
<h3>vgg_16_network<a class="headerlink" href="#vgg-16-network" title="永久链接至标题"></a></h3>
441
<dl class="function">
442
<dt>
443
<code class="descclassname">paddle.v2.networks.</code><code class="descname">vgg_16_network</code><span class="sig-paren">(</span><em>input_image</em>, <em>num_channels</em>, <em>num_classes=1000</em><span class="sig-paren">)</span></dt>
444 445 446 447 448 449
<dd><p>Same model from <a class="reference external" href="https://gist.github.com/ksimonyan/211839e770f7b538e2d8">https://gist.github.com/ksimonyan/211839e770f7b538e2d8</a></p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
450 451 452
<li><strong>num_classes</strong> (<em>int</em>) &#8211; number of class.</li>
<li><strong>input_image</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; input channels num.</li>
453 454 455
</ul>
</td>
</tr>
456 457 458 459
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
460 461 462 463 464 465 466 467 468 469 470 471 472 473
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="recurrent">
<h2>Recurrent<a class="headerlink" href="#recurrent" title="永久链接至标题"></a></h2>
<div class="section" id="lstm">
<h3>LSTM<a class="headerlink" href="#lstm" title="永久链接至标题"></a></h3>
<div class="section" id="lstmemory-unit">
<h4>lstmemory_unit<a class="headerlink" href="#lstmemory-unit" title="永久链接至标题"></a></h4>
474
<dl class="function">
475
<dt>
476
<code class="descclassname">paddle.v2.networks.</code><code class="descname">lstmemory_unit</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
477 478 479
<dd><p>lstmemory_unit defines the caculation process of a LSTM unit during a
single time step. This function is not a recurrent layer, so it can not be
directly used to process sequence input. This function is always used in
480 481 482 483 484 485
recurrent_group (see layers.py for more details) to implement attention
mechanism.</p>
<p>Please refer to  <strong>Generating Sequences With Recurrent Neural Networks</strong>
for more details about LSTM. The link goes as follows:
.. _Link: <a class="reference external" href="https://arxiv.org/abs/1308.0850">https://arxiv.org/abs/1308.0850</a></p>
<div class="math">
486
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
487 488 489
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">lstm_step</span> <span class="o">=</span> <span class="n">lstmemory_unit</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span>
                           <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
490 491 492
                           <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">(),</span>
                           <span class="n">gate_act</span><span class="o">=</span><span class="n">SigmoidActivation</span><span class="p">(),</span>
                           <span class="n">state_act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">())</span>
493 494 495 496 497 498 499
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
500
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
501
<li><strong>out_memory</strong> (<em>LayerOutput | None</em>) &#8211; output of previous time step</li>
502 503
<li><strong>name</strong> (<em>basestring</em>) &#8211; lstmemory unit name.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; lstmemory unit size.</li>
504 505 506 507 508
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute, None means default attribute.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; last activiation type of lstm.</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activiation type of lstm.</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; state activiation type of lstm.</li>
<li><strong>input_proj_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias attribute for input to hidden projection.
509
False means no bias, None means default bias.</li>
510 511
<li><strong>input_proj_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; extra layer attribute for input to hidden
projection of the LSTM unit, such as dropout, error clipping.</li>
512
<li><strong>lstm_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias parameter attribute of lstm layer.
513
False means no bias, None means default bias.</li>
514
<li><strong>lstm_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; extra attribute of lstm layer.</li>
515 516 517 518 519 520
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">lstmemory unit name.</p>
</td>
</tr>
521
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
522 523 524 525 526 527 528 529 530
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="lstmemory-group">
<h4>lstmemory_group<a class="headerlink" href="#lstmemory-group" title="永久链接至标题"></a></h4>
531
<dl class="function">
532
<dt>
533
<code class="descclassname">paddle.v2.networks.</code><code class="descname">lstmemory_group</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
534
<dd><p>lstm_group is a recurrent_group version of Long Short Term Memory. It
535 536
does exactly the same calculation as the lstmemory layer (see lstmemory in
layers.py for the maths) does. A promising benefit is that LSTM memory
537
cell states(or hidden states) in every time step are accessible to the
538
user. This is especially useful in attention model. If you do not need to
539
access the internal states of the lstm and merely use its outputs,
540 541 542 543
it is recommended to use the lstmemory, which is relatively faster than
lstmemory_group.</p>
<p>NOTE: In PaddlePaddle&#8217;s implementation, the following input-to-hidden
multiplications:
544 545
<span class="math">\(W_{x_i}x_{t}\)</span> , <span class="math">\(W_{x_f}x_{t}\)</span>,
<span class="math">\(W_{x_c}x_t\)</span>, <span class="math">\(W_{x_o}x_{t}\)</span> are not done in lstmemory_unit to
546
speed up the calculations. Consequently, an additional mixed_layer with
547 548 549 550
full_matrix_projection must be included before lstmemory_unit is called.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">lstm_step</span> <span class="o">=</span> <span class="n">lstmemory_group</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span>
                            <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
551 552 553
                            <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">(),</span>
                            <span class="n">gate_act</span><span class="o">=</span><span class="n">SigmoidActivation</span><span class="p">(),</span>
                            <span class="n">state_act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">())</span>
554 555 556 557 558 559 560
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
561
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
562
<li><strong>size</strong> (<em>int</em>) &#8211; lstmemory group size.</li>
563 564 565 566 567 568 569 570
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of lstmemory group.</li>
<li><strong>out_memory</strong> (<em>LayerOutput | None</em>) &#8211; output of previous time step.</li>
<li><strong>reverse</strong> (<em>bool</em>) &#8211; process the input in a reverse order or not.</li>
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute, None means default attribute.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; last activiation type of lstm.</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activiation type of lstm.</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; state activiation type of lstm.</li>
<li><strong>lstm_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias parameter attribute of lstm layer.
571
False means no bias, None means default bias.</li>
572
<li><strong>input_proj_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias attribute for input to hidden projection.
573 574 575
False means no bias, None means default bias.</li>
<li><strong>input_proj_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; extra layer attribute for input to hidden
projection of the LSTM unit, such as dropout, error clipping.</li>
576
<li><strong>lstm_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; lstm layer&#8217;s extra attribute.</li>
577 578 579 580 581 582
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the lstmemory group.</p>
</td>
</tr>
583
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
584 585 586 587 588 589 590 591 592
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-lstm">
<h4>simple_lstm<a class="headerlink" href="#simple-lstm" title="永久链接至标题"></a></h4>
593
<dl class="function">
594
<dt>
595
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_lstm</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
596
<dd><p>Simple LSTM Cell.</p>
597 598
<p>It just combines a mixed layer with fully_matrix_projection and a lstmemory
layer. The simple lstm cell was implemented with follow equations.</p>
599 600
<div class="math">
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
601 602
<p>Please refer to <strong>Generating Sequences With Recurrent Neural Networks</strong> for more
details about lstm. <a class="reference external" href="http://arxiv.org/abs/1308.0850">Link</a> is here.</p>
603 604 605 606 607 608
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; lstm layer name.</li>
609
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; layer&#8217;s input.</li>
610
<li><strong>size</strong> (<em>int</em>) &#8211; lstm layer size.</li>
611 612
<li><strong>reverse</strong> (<em>bool</em>) &#8211; process the input in a reverse order or not.</li>
<li><strong>mat_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute of matrix projection in mixed layer.</li>
613
<li><strong>bias_param_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; bias parameter attribute. False means no bias, None
614
means default bias.</li>
615 616 617 618 619 620
<li><strong>inner_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute of lstm cell.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; last activiation type of lstm.</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activiation type of lstm.</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; state activiation type of lstm.</li>
<li><strong>mixed_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; extra attribute of mixed layer.</li>
<li><strong>lstm_cell_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; extra attribute of lstm.</li>
621 622 623
</ul>
</td>
</tr>
624
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output.</p>
625 626
</td>
</tr>
627
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
628 629 630 631 632 633 634 635 636
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="bidirectional-lstm">
<h4>bidirectional_lstm<a class="headerlink" href="#bidirectional-lstm" title="永久链接至标题"></a></h4>
637
<dl class="function">
638
<dt>
639
<code class="descclassname">paddle.v2.networks.</code><code class="descname">bidirectional_lstm</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
640
<dd><p>A bidirectional_lstm is a recurrent unit that iterates over the input
641 642
sequence both in forward and backward orders, and then concatenate two
outputs to form a final output. However, concatenation of two outputs
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
is not the only way to form the final output, you can also, for example,
just add them together.</p>
<p>Please refer to  <strong>Neural Machine Translation by Jointly Learning to Align
and Translate</strong> for more details about the bidirectional lstm.
The link goes as follows:
.. _Link: <a class="reference external" href="https://arxiv.org/pdf/1409.0473v3.pdf">https://arxiv.org/pdf/1409.0473v3.pdf</a></p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">bi_lstm</span> <span class="o">=</span> <span class="n">bidirectional_lstm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">input1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">512</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; bidirectional lstm layer name.</li>
659
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
660
<li><strong>size</strong> (<em>int</em>) &#8211; lstm layer size.</li>
661
<li><strong>return_seq</strong> (<em>bool</em>) &#8211; If set False, the last time step of output are
662
concatenated and returned.
663 664
If set True, the entire output sequences in forward
and backward directions are concatenated and returned.</li>
665 666 667
</ul>
</td>
</tr>
668
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
669 670
</td>
</tr>
671
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
672 673 674 675 676 677 678 679 680 681 682 683
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="gru">
<h3>GRU<a class="headerlink" href="#gru" title="永久链接至标题"></a></h3>
<div class="section" id="gru-unit">
<h4>gru_unit<a class="headerlink" href="#gru-unit" title="永久链接至标题"></a></h4>
684
<dl class="function">
685
<dt>
686
<code class="descclassname">paddle.v2.networks.</code><code class="descname">gru_unit</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
687 688 689
<dd><p>gru_unit defines the calculation process of a gated recurrent unit during a single
time step. This function is not a recurrent layer, so it can not be
directly used to process sequence input. This function is always used in
690 691 692 693 694 695 696 697
the recurrent_group (see layers.py for more details) to implement attention
mechanism.</p>
<p>Please see grumemory in layers.py for the details about the maths.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
698
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
699
<li><strong>memory_boot</strong> (<em>LayerOutput | None</em>) &#8211; the initialization state of the LSTM cell.</li>
700 701
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
702 703 704
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activation type of gru</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activation type or gru</li>
<li><strong>gru_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; Extra attribute of the gru layer.</li>
705 706 707 708 709 710
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru output layer.</p>
</td>
</tr>
711
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
712 713 714 715 716 717 718 719 720
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="gru-group">
<h4>gru_group<a class="headerlink" href="#gru-group" title="永久链接至标题"></a></h4>
721
<dl class="function">
722
<dt>
723
<code class="descclassname">paddle.v2.networks.</code><code class="descname">gru_group</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
724
<dd><p>gru_group is a recurrent_group version of Gated Recurrent Unit. It
725 726 727
does exactly the same calculation as the grumemory layer does. A promising
benefit is that gru hidden states are accessible to the user. This is
especially useful in attention model. If you do not need to access
728
any internal state and merely use the outputs of a GRU, it is recommended
729 730 731
to use the grumemory, which is relatively faster.</p>
<p>Please see grumemory in layers.py for more detail about the maths.</p>
<p>The example usage is:</p>
732
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">gru_group</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span>
733
                <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
734 735
                <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">(),</span>
                <span class="n">gate_act</span><span class="o">=</span><span class="n">SigmoidActivation</span><span class="p">())</span>
736 737 738 739 740 741 742
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
743
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
744
<li><strong>memory_boot</strong> (<em>LayerOutput | None</em>) &#8211; the initialization state of the LSTM cell.</li>
745 746
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
747 748 749 750 751 752
<li><strong>reverse</strong> (<em>bool</em>) &#8211; process the input in a reverse order or not.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activiation type of gru</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activiation type of gru</li>
<li><strong>gru_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias parameter attribute of gru layer,
False means no bias, None means default bias.</li>
<li><strong>gru_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; Extra attribute of the gru layer.</li>
753 754 755 756 757 758
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru group.</p>
</td>
</tr>
759
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
760 761 762 763 764 765 766 767 768
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-gru">
<h4>simple_gru<a class="headerlink" href="#simple-gru" title="永久链接至标题"></a></h4>
769
<dl class="function">
770
<dt>
771
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_gru</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
772
<dd><p>You may see gru_step_layer, grumemory in layers.py, gru_unit, gru_group,
773 774 775
simple_gru in network.py. The reason why there are so many interfaces is
that we have two ways to implement recurrent neural network. One way is to
use one complete layer to implement rnn (including simple rnn, gru and lstm)
776
with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But
777 778 779 780 781 782
the multiplication operation <span class="math">\(W x_t\)</span> is not computed in these layers.
See details in their interfaces in layers.py.
The other implementation is to use an recurrent group which can ensemble a
series of layers to compute rnn step by step. This way is flexible for
attenion mechanism or other complex connections.</p>
<ul class="simple">
783
<li>gru_step_layer: only compute rnn by one step. It needs an memory as input
784
and can be used in recurrent group.</li>
785
<li>gru_unit: a wrapper of gru_step_layer with memory.</li>
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
<li>gru_group: a GRU cell implemented by a combination of multiple layers in
recurrent group.
But <span class="math">\(W x_t\)</span> is not done in group.</li>
<li>gru_memory: a GRU cell implemented by one layer, which does same calculation
with gru_group and is faster than gru_group.</li>
<li>simple_gru: a complete GRU implementation inlcuding <span class="math">\(W x_t\)</span> and
gru_group. <span class="math">\(W\)</span> contains <span class="math">\(W_r\)</span>, <span class="math">\(W_z\)</span> and <span class="math">\(W\)</span>, see
formula in grumemory.</li>
</ul>
<p>The computational speed is that, grumemory is relatively better than
gru_group, and gru_group is relatively better than simple_gru.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">simple_gru</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
806
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
807 808
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
809 810 811 812 813 814
<li><strong>reverse</strong> (<em>bool</em>) &#8211; process the input in a reverse order or not.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activiation type of gru</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activiation type of gru</li>
<li><strong>gru_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias parameter attribute of gru layer,
False means no bias, None means default bias.</li>
<li><strong>gru_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; Extra attribute of the gru layer.</li>
815 816 817 818 819 820
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru group.</p>
</td>
</tr>
821
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
822 823 824 825 826 827 828 829 830
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-gru2">
<h4>simple_gru2<a class="headerlink" href="#simple-gru2" title="永久链接至标题"></a></h4>
831
<dl class="function">
832
<dt>
833
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_gru2</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
834 835
<dd><p>simple_gru2 is the same with simple_gru, but using grumemory instead.
Please refer to grumemory in layers.py for more detail about the math.
836 837 838 839 840 841 842 843 844 845
simple_gru2 is faster than simple_gru.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">simple_gru2</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
846
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
847 848
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
849 850 851 852 853 854
<li><strong>reverse</strong> (<em>bool</em>) &#8211; process the input in a reverse order or not.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activiation type of gru</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activiation type of gru</li>
<li><strong>gru_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias parameter attribute of gru layer,
False means no bias, None means default bias.</li>
<li><strong>gru_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; Extra attribute of the gru layer.</li>
855 856 857 858 859 860
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru group.</p>
</td>
</tr>
861
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
862 863 864 865 866 867 868 869 870
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="bidirectional-gru">
<h4>bidirectional_gru<a class="headerlink" href="#bidirectional-gru" title="永久链接至标题"></a></h4>
871
<dl class="function">
872
<dt>
873
<code class="descclassname">paddle.v2.networks.</code><code class="descname">bidirectional_gru</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
874
<dd><p>A bidirectional_gru is a recurrent unit that iterates over the input
875
sequence both in forward and backward orders, and then concatenate two
876 877 878 879 880 881 882 883 884 885 886 887 888
outputs to form a final output. However, concatenation of two outputs
is not the only way to form the final output, you can also, for example,
just add them together.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">bi_gru</span> <span class="o">=</span> <span class="n">bidirectional_gru</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">input1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">512</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; bidirectional gru layer name.</li>
889
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
890
<li><strong>size</strong> (<em>int</em>) &#8211; gru layer size.</li>
891
<li><strong>return_seq</strong> (<em>bool</em>) &#8211; If set False, the last time step of output are
892
concatenated and returned.
893 894
If set True, the entire output sequences in forward
and backward directions are concatenated and returned.</li>
895 896 897
</ul>
</td>
</tr>
898
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
899 900
</td>
</tr>
901
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
902 903 904 905 906 907 908 909 910 911
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="simple-attention">
<h3>simple_attention<a class="headerlink" href="#simple-attention" title="永久链接至标题"></a></h3>
912
<dl class="function">
913
<dt>
914
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_attention</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
915
<dd><p>Calculate and return a context vector with attention mechanism.
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
Size of the context vector equals to size of the encoded_sequence.</p>
<div class="math">
\[ \begin{align}\begin{aligned}a(s_{i-1},h_{j}) &amp; = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j})\\e_{i,j} &amp; = a(s_{i-1}, h_{j})\\a_{i,j} &amp; = \frac{exp(e_{i,j})}{\sum_{k=1}^{T_x}{exp(e_{i,k})}}\\c_{i} &amp; = \sum_{j=1}^{T_{x}}a_{i,j}h_{j}\end{aligned}\end{align} \]</div>
<p>where <span class="math">\(h_{j}\)</span> is the jth element of encoded_sequence,
<span class="math">\(U_{a}h_{j}\)</span> is the jth element of encoded_proj
<span class="math">\(s_{i-1}\)</span> is decoder_state
<span class="math">\(f\)</span> is weight_act, and is set to tanh by default.</p>
<p>Please refer to <strong>Neural Machine Translation by Jointly Learning to
Align and Translate</strong> for more details. The link is as follows:
<a class="reference external" href="https://arxiv.org/abs/1409.0473">https://arxiv.org/abs/1409.0473</a>.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">context</span> <span class="o">=</span> <span class="n">simple_attention</span><span class="p">(</span><span class="n">encoded_sequence</span><span class="o">=</span><span class="n">enc_seq</span><span class="p">,</span>
                           <span class="n">encoded_proj</span><span class="o">=</span><span class="n">enc_proj</span><span class="p">,</span>
                           <span class="n">decoder_state</span><span class="o">=</span><span class="n">decoder_prev</span><span class="p">,)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the attention model.</li>
938
<li><strong>softmax_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute of sequence softmax
939 940
that is used to produce attention weight.</li>
<li><strong>weight_act</strong> (<em>BaseActivation</em>) &#8211; activation of the attention model.</li>
941 942
<li><strong>encoded_sequence</strong> (<em>LayerOutput</em>) &#8211; output of the encoder</li>
<li><strong>encoded_proj</strong> (<em>LayerOutput</em>) &#8211; attention weight is computed by a feed forward neural
943 944 945 946 947
network which has two inputs : decoder&#8217;s hidden state
of previous time step and encoder&#8217;s output.
encoded_proj is output of the feed-forward network for
encoder&#8217;s output. Here we pre-compute it outside
simple_attention for speed consideration.</li>
948 949
<li><strong>decoder_state</strong> (<em>LayerOutput</em>) &#8211; hidden state of decoder in previous time step</li>
<li><strong>transform_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute of the feed-forward
950 951 952 953 954
network that takes decoder_state as inputs to
compute attention weight.</li>
</ul>
</td>
</tr>
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">a context vector</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="dot-product-attention">
<h3>dot_product_attention<a class="headerlink" href="#dot-product-attention" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.networks.</code><code class="descname">dot_product_attention</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Calculate and return a context vector with dot-product attention mechanism.
The dimension of the context vector equals to that of the attended_sequence.</p>
<div class="math">
\[ \begin{align}\begin{aligned}a(s_{i-1},h_{j}) &amp; = s_{i-1}^\mathrm{T} h_{j}\\e_{i,j} &amp; = a(s_{i-1}, h_{j})\\a_{i,j} &amp; = \frac{exp(e_{i,j})}{\sum_{k=1}^{T_x}{exp(e_{i,k})}}\\c_{i} &amp; = \sum_{j=1}^{T_{x}}a_{i,j}z_{j}\end{aligned}\end{align} \]</div>
<p>where <span class="math">\(h_{j}\)</span> is the jth element of encoded_sequence,
<span class="math">\(z_{j}\)</span> is the jth element of attended_sequence,
<span class="math">\(s_{i-1}\)</span> is transformed_state.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">context</span> <span class="o">=</span> <span class="n">dot_product_attention</span><span class="p">(</span><span class="n">encoded_sequence</span><span class="o">=</span><span class="n">enc_seq</span><span class="p">,</span>
                                <span class="n">attended_sequence</span><span class="o">=</span><span class="n">att_seq</span><span class="p">,</span>
                                <span class="n">transformed_state</span><span class="o">=</span><span class="n">state</span><span class="p">,)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; A prefix attached to the name of each layer that defined inside
the dot_product_attention.</li>
<li><strong>softmax_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; The parameter attribute of sequence softmax
that is used to produce attention weight.</li>
<li><strong>encoded_sequence</strong> (<em>LayerOutput</em>) &#8211; The output hidden vectors of the encoder.</li>
<li><strong>attended_sequence</strong> (<em>LayerOutput</em>) &#8211; The attention weight is computed by a feed forward neural
network which has two inputs : decoder&#8217;s transformed hidden
state of previous time step and encoder&#8217;s output.
attended_sequence is the sequence to be attended.</li>
<li><strong>transformed_state</strong> (<em>LayerOutput</em>) &#8211; The transformed hidden state of decoder in previous time step.
Since the dot-product operation will be performed on it and the
encoded_sequence, their dimensions must be equal. For flexibility,
we suppose transformations of the decoder&#8217;s hidden state have been
done outside dot_product_attention and no more will be performed
inside. Then users can use either the original or transformed one.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">The context vector.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="attr.html" class="btn btn-neutral float-right" title="Parameter Attribute" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="pooling.html" class="btn btn-neutral" title="Pooling" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
1065 1066
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
1067 1068 1069 1070 1071 1072
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../../_static/translations.js"></script>
1073
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>