sendrecvop_utils.cc 11.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
16 17 18 19 20
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
G
gongweibao 已提交
21 22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {
namespace detail {

void SerializeToMessage(const std::string& name, const framework::Variable* var,
                        const platform::DeviceContext& ctx,
                        sendrecv::VariableMessage* msg) {
  msg->set_varname(name);
  std::ostringstream oss;
  switch (framework::ToVarType(var->Type())) {
32
    case framework::proto::VarType_Type_LOD_TENSOR:
G
gongweibao 已提交
33 34 35
      msg->set_type(sendrecv::VarType::LOD_TENSOR);
      framework::SerializeToStream(oss, var->Get<framework::LoDTensor>(), ctx);
      break;
36
    case framework::proto::VarType_Type_SELECTED_ROWS:
G
gongweibao 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
      msg->set_type(sendrecv::VarType::SELECTED_ROWS);
      framework::SerializeToStream(oss, var->Get<framework::SelectedRows>(),
                                   ctx);
      break;
    default: {
      PADDLE_THROW("Serialize does not support type: %s",
                   typeid(var->Type()).name());
      break;
    }
  }
  msg->set_serialized(oss.str());
}

void DeserializeFromMessage(const sendrecv::VariableMessage& msg,
                            const platform::DeviceContext& ctx,
                            framework::Variable* var) {
  std::istringstream iss(msg.serialized());
  switch (msg.type()) {
    case sendrecv::VarType::LOD_TENSOR:
      DeserializeFromStream(iss, var->GetMutable<framework::LoDTensor>(), ctx);
      break;
    case sendrecv::VarType::SELECTED_ROWS: {
      DeserializeFromStream(iss, var->GetMutable<framework::SelectedRows>(),
                            ctx);
      break;
    }
    default: {
      PADDLE_THROW("Deserialize does not support type: %s",
                   typeid(var->Type()).name());
      break;
    }
  }
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
                           ::grpc::ByteBuffer* msg) {
  using VarMsg = sendrecv::VariableMessage;
  sendrecv::VariableMessage request;
  std::string header;
  request.AppendToString(&header);
  // When using GPU, need to free the copied CPU buffer
  // when the ByteBuffer destroies
  // TODO(typhoonzero): add unref here, if we have dependent
  // parallelism execution, need to know when to free the tensor.
  DestroyCallback destroy_callback = [](void* backing) {};

  void* buf = malloc(1024);
  void* payload;
  size_t payload_size;
  ProtoEncodeHelper e((char*)buf, 1024);
  e.WriteString(VarMsg::kVarnameFieldNumber, name);
  if (var->IsType<framework::LoDTensor>()) {
    e.WriteUint64(VarMsg::kTypeFieldNumber, 0);
  } else if (var->IsType<framework::SelectedRows>()) {
    e.WriteUint64(VarMsg::kTypeFieldNumber, 1);
  }

  switch (framework::ToVarType(var->Type())) {
    case framework::proto::VarType_Type_LOD_TENSOR: {
      auto tensor = var->Get<framework::LoDTensor>();
      e.WriteUint64(VarMsg::kDataTypeFieldNumber,
                    framework::ToDataType(tensor.type()));
      for (auto& dim : framework::vectorize(tensor.dims())) {
        e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
      }
      auto lod = tensor.lod();  // std::vector<Vector<size_t>>
      if (lod.size() > 0) {
        e.WriteUint64(VarMsg::kLodLevelFieldNumber, lod.size());

        for (auto& each : lod) {
          e.WriteVarlengthBeginning(VarMsg::kLodFieldNumber,
                                    2 +      // tag + varintlength of submessage
                                        1 +  // kLodDataFieldNumber
                                        each.size());
          // auto copied from GPU
          for (auto& d : each) {
            e.WriteUint64(VarMsg::LodData::kLodDataFieldNumber, d);
          }
        }
      }
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
        PADDLE_ENFORCE(platform::is_gpu_place(tensor.place()));
        platform::CPUPlace cpu;
        auto& gpu_dev_ctx =
            static_cast<const platform::CUDADeviceContext&>(ctx);
        auto copy_size = tensor.memory_size();
        payload = memory::Alloc(cpu, copy_size);
        memory::Copy(cpu, payload,
                     boost::get<platform::CUDAPlace>(tensor.place()),
                     reinterpret_cast<const void*>(tensor.data<void>()),
                     copy_size, gpu_dev_ctx.stream());
130
        ctx.Wait();
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        destroy_callback = [](void* backing) {
          platform::CPUPlace cpu;
          memory::Free(cpu, backing);
        };
#endif
      } else {
        payload = tensor.data<void>();
      }
      payload_size = tensor.memory_size();
      e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
    } break;
    case framework::proto::VarType_Type_SELECTED_ROWS: {
      // TODO(typhoonzero): selectedrows implement should not use unique_ptr
      auto* slr = var->GetMutable<framework::SelectedRows>();
      e.WriteUint64(VarMsg::kDataTypeFieldNumber,
                    framework::ToDataType(slr->value().type()));
      for (auto& dim : framework::vectorize(slr->value().dims())) {
        e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
      }
      e.WriteUint64(VarMsg::kLodLevelFieldNumber, 0);
      auto* tensor = slr->mutable_value();
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
        platform::CPUPlace cpu;
        auto& gpu_dev_ctx =
            static_cast<const platform::CUDADeviceContext&>(ctx);
        auto copy_size = tensor->memory_size();
        payload = memory::Alloc(cpu, copy_size);
        memory::Copy(cpu, payload,
                     boost::get<platform::CUDAPlace>(tensor->place()),
                     reinterpret_cast<const void*>(tensor->data<void>()),
                     copy_size, gpu_dev_ctx.stream());
        ctx.Wait();
        destroy_callback = [](void* backing) {
165 166
          platform::CPUPlace cpu;
          memory::Free(cpu, backing);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        };
#endif
      } else {
        payload = slr->mutable_value()->data<void>();
      }
      payload_size = tensor->memory_size();
      e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
    } break;
    default:
      PADDLE_THROW("Serialize does not support type: %s",
                   typeid(var->Type()).name());
      break;
  }
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload, payload_size, destroy_callback,
                                    static_cast<char*>(payload)),
      ::grpc::Slice::STEAL_REF);

  if (framework::ToVarType(var->Type()) ==
      framework::proto::VarType_Type_SELECTED_ROWS) {
    auto* slr = var->GetMutable<framework::SelectedRows>();

    ProtoEncodeHelper e2((char*)buf, 128);
    // NOTE: rows is of type int64_t
    size_t rows_memory_size =
        slr->rows().capacity() * framework::SizeOfType(typeid(int64_t));
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
            rows_memory_size,
            [](void* backing) {
              // TODO(typhoonzero): add unref here, same as above.
            },
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }

  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
                               framework::Variable* var) {
  sendrecv::VariableMessage meta;
  GrpcByteBufferSource source;
  source.Init(msg);
  ::google::protobuf::io::CodedInputStream input(&source);
  // do zerocopy parsing
  PADDLE_ENFORCE(meta.ParseFromCodedStream(&input));
  PADDLE_ENFORCE(input.ConsumedEntireMessage());
  // dims is needed by both tensor and selectedrows
  std::vector<int> vecdims;
  for (auto& d : meta.dims()) {
    vecdims.push_back(d);
  }
  framework::DDim dims = framework::make_ddim(vecdims);

  if (meta.type() == sendrecv::LOD_TENSOR) {
    auto* tensor = var->GetMutable<framework::LoDTensor>();
    tensor->Resize(dims);
    void* tensor_data = tensor->mutable_data(
        ctx.GetPlace(),
        paddle::operators::detail::ToTypeIndex(meta.data_type()));
    framework::LoD lod;
    for (int i = 0; i < meta.lod_level(); ++i) {
      framework::Vector<size_t> v;
      for (int j = 0; j < meta.lod(i).lod_data_size(); ++j) {
        v.push_back(meta.lod(i).lod_data(j));
      }
      lod.push_back(v);
    }
    tensor->set_lod(lod);
    // How to avoid copying and use the message buffer directly?
    // Maybe need to find a way to release all memory except tensor content.
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
      platform::CPUPlace cpu;
      auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
      memory::Copy(boost::get<platform::CUDAPlace>(tensor->place()),
                   tensor_data, cpu,
                   reinterpret_cast<const void*>(meta.serialized().data()),
                   meta.serialized().size(), gpu_dev_ctx.stream());
262
      ctx.Wait();
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
#endif
    } else {
      memcpy(tensor_data,
             reinterpret_cast<const void*>(meta.serialized().data()),
             meta.serialized().size());
    }
  } else if (meta.type() == sendrecv::SELECTED_ROWS) {
    auto* slr = var->GetMutable<framework::SelectedRows>();
    auto* tensor = slr->mutable_value();
    int64_t* rows_data = slr->mutable_rows()->data();
    tensor->Resize(dims);
    void* tensor_data = tensor->mutable_data(
        ctx.GetPlace(),
        paddle::operators::detail::ToTypeIndex(meta.data_type()));
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
      platform::CPUPlace cpu;
      auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
      memory::Copy(boost::get<platform::CUDAPlace>(tensor->place()),
                   tensor_data, cpu,
                   reinterpret_cast<const void*>(meta.serialized().data()),
                   meta.serialized().size(), gpu_dev_ctx.stream());
285
      ctx.Wait();
286 287 288 289 290 291 292 293 294 295 296 297
#endif
    } else {
      memcpy(tensor_data,
             reinterpret_cast<const void*>(meta.serialized().data()),
             meta.serialized().size());
    }
    // copy rows CPU data, GPU data will be copied lazly
    memcpy(rows_data, reinterpret_cast<const void*>(meta.rows().data()),
           meta.rows().size());
  }
}

G
gongweibao 已提交
298 299
}  // namespace detail
}  // namespace operators
300
}  // namespace paddle