imikolov.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
imikolov's simple dataset.

This module will download dataset from 
http://www.fit.vutbr.cz/~imikolov/rnnlm/ and parse training set and test set
into paddle reader creators.
"""
import paddle.v2.dataset.common
import collections
import tarfile

__all__ = ['train', 'test', 'build_dict', 'convert']

URL = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz'
MD5 = '30177ea32e27c525793142b6bf2c8e2d'


class DataType(object):
    NGRAM = 1
    SEQ = 2


def word_count(f, word_freq=None):
    if word_freq is None:
        word_freq = collections.defaultdict(int)

    for l in f:
        for w in l.strip().split():
            word_freq[w] += 1
        word_freq['<s>'] += 1
        word_freq['<e>'] += 1

    return word_freq


def build_dict(min_word_freq=50):
    """
    Build a word dictionary from the corpus,  Keys of the dictionary are words,
    and values are zero-based IDs of these words.
    """
    train_filename = './simple-examples/data/ptb.train.txt'
    test_filename = './simple-examples/data/ptb.valid.txt'
    with tarfile.open(
            paddle.v2.dataset.common.download(
                paddle.v2.dataset.imikolov.URL, 'imikolov',
                paddle.v2.dataset.imikolov.MD5)) as tf:
        trainf = tf.extractfile(train_filename)
        testf = tf.extractfile(test_filename)
        word_freq = word_count(testf, word_count(trainf))
        if '<unk>' in word_freq:
            # remove <unk> for now, since we will set it as last index
            del word_freq['<unk>']

        word_freq = filter(lambda x: x[1] > min_word_freq, word_freq.items())

        word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
        words, _ = list(zip(*word_freq_sorted))
        word_idx = dict(zip(words, xrange(len(words))))
        word_idx['<unk>'] = len(words)

    return word_idx


def reader_creator(filename, word_idx, n, data_type):
    def reader():
        with tarfile.open(
                paddle.v2.dataset.common.download(
                    paddle.v2.dataset.imikolov.URL, 'imikolov',
                    paddle.v2.dataset.imikolov.MD5)) as tf:
            f = tf.extractfile(filename)

            UNK = word_idx['<unk>']
            for l in f:
                if DataType.NGRAM == data_type:
                    assert n > -1, 'Invalid gram length'
                    l = ['<s>'] + l.strip().split() + ['<e>']
                    if len(l) >= n:
                        l = [word_idx.get(w, UNK) for w in l]
                        for i in range(n, len(l) + 1):
                            yield tuple(l[i - n:i])
                elif DataType.SEQ == data_type:
                    l = l.strip().split()
                    l = [word_idx.get(w, UNK) for w in l]
                    src_seq = [word_idx['<s>']] + l
                    trg_seq = l + [word_idx['<e>']]
                    if n > 0 and len(src_seq) > n: continue
                    yield src_seq, trg_seq
                else:
                    assert False, 'Unknow data type'

    return reader


def train(word_idx, n, data_type=DataType.NGRAM):
    """
    imikolov training set creator.

    It returns a reader creator, each sample in the reader is a word ID
    tuple.

    :param word_idx: word dictionary
    :type word_idx: dict
    :param n: sliding window size if type is ngram, otherwise max length of sequence
    :type n: int
    :param data_type: data type (ngram or sequence)
    :type data_type: member variable of DataType (NGRAM or SEQ)
    :return: Training reader creator
    :rtype: callable
    """
    return reader_creator('./simple-examples/data/ptb.train.txt', word_idx, n,
                          data_type)


def test(word_idx, n, data_type=DataType.NGRAM):
    """
    imikolov test set creator.

    It returns a reader creator, each sample in the reader is a word ID
    tuple.

    :param word_idx: word dictionary
    :type word_idx: dict
    :param n: sliding window size if type is ngram, otherwise max length of sequence
    :type n: int
    :param data_type: data type (ngram or sequence)
    :type data_type: member variable of DataType (NGRAM or SEQ)
    :return: Test reader creator
    :rtype: callable
    """
    return reader_creator('./simple-examples/data/ptb.valid.txt', word_idx, n,
                          data_type)


def fetch():
    paddle.v2.dataset.common.download(URL, "imikolov", MD5)


def convert(path):
    """
    Converts dataset to recordio format
    """
    N = 5
    word_dict = build_dict()
    paddle.v2.dataset.common.convert(path,
                                     train(word_dict, N), 1000,
                                     "imikolov_train")
    paddle.v2.dataset.common.convert(path,
                                     test(word_dict, N), 1000, "imikolov_test")