prim_op_test.py 47.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import struct
from collections import defaultdict

import config
import numpy as np

import paddle
import paddle.fluid.core as core
from paddle.fluid.framework import _dygraph_tracer, in_dygraph_mode
from paddle.fluid.layers.utils import map_structure
from paddle.jit.dy2static.utils import parse_arg_and_kwargs


def flatten(nest_list):
    out = []
    for i in nest_list:
C
Charles-hit 已提交
31
        if isinstance(i, (list, tuple)):
32 33 34 35 36 37 38 39 40 41 42
            tmp_list = flatten(i)
            for j in tmp_list:
                out.append(j)
        else:
            out.append(i)
    return out


def _as_list(x):
    if x is None:
        return []
C
Charles-hit 已提交
43
    return list(x) if isinstance(x, (list, tuple)) else [x]
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246


def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
        lambda x: struct.unpack(
            '<f', struct.pack('<I', np.uint32(x) << np.uint32(16))
        )[0],
        otypes=[np.float32],
    )(in_list.flat)
    return np.reshape(out, in_list.shape)


# TODO(wanghao107): OpTestUtils will be moved to op_test.py
class OpTestUtils:
    @classmethod
    def _get_kernel_signature(
        cls, op_type, eager_tensor_inputs, eager_tensor_outputs, attrs_outputs
    ):
        try:
            kernel_sig = _dygraph_tracer()._get_kernel_signature(
                op_type,
                eager_tensor_inputs,
                eager_tensor_outputs,
                attrs_outputs,
            )
        except RuntimeError as re:
            """we think the kernel_sig is missing."""
            kernel_sig = None
            print(
                "[Warning: op_test.py] Kernel Signature is not found for %s, fall back to intermediate state."
                % op_type
            )
        return kernel_sig

    @classmethod
    def prepare_python_api_arguments(
        cls, api, op_proto_ins, op_proto_attrs, kernel_sig
    ):
        """map from `op proto inputs and attrs` to `api input list and api attrs dict`

        NOTE: the op_proto_attrs and op_proto_ins is a default dict. default value is []
        """

        class Empty:
            pass

        def is_empty(a):
            return isinstance(a, Empty)

        def get_default(idx, defaults):
            assert not isinstance(defaults[idx], Empty), (
                "%d-th params of python api don't have default value." % idx
            )
            return defaults[idx]

        def to_defaults_list(params, defaults):
            return [defaults[p] for p in params if p in defaults]

        def parse_attri_value(name, op_inputs, op_attrs):
            """parse true value from inputs and attrs, if there is no name passed by OpTest, return Empty
            1. if the name in op_attrs, use the op_attrs[name]
            2. if the name in op_inputs, convert the op_inputs to [type of default value]
            3. if the name not in op_attrs ans op_inputs, return Empty. (this will use the default value from python api)
            """
            if name in op_proto_attrs:
                return op_proto_attrs[name]
            elif name in op_inputs:
                if len(op_inputs[name]) == 1:
                    # why don't use numpy().item() : if the Tensor is float64, we will change it to python.float32, where we loss accuracy: [allclose_op]
                    # why we reconstruct a tensor: because we want the tensor in cpu.
                    if in_dygraph_mode():
                        return paddle.to_tensor(
                            op_inputs[name][0].numpy(), place='cpu'
                        )
                    else:
                        return op_inputs[name][0]
                else:
                    # if this is a list (test_unsqueeze2_op): we just pass it into the python api.
                    return op_inputs[name]
            else:
                return Empty()

        # NOTE(xiongkun): the logic of constructing parameters:
        # for example:
        #    python api: cumprod(x, dim, dtype=None, name=None)
        #    kernel sig: [["x"], ["dim"], ["out"]]"
        #
        # we will construct a lot of list with the same length : len == len(api_params), here is 4
        #    api_params = ["x", "dim", "dtype", "name"]
        #    api_defaults = [Empty, Empty, None, None]; empty means no defaults.
        #    inputs_and_attrs = ["x", "dim"] , the length may shorter or longer than api_params
        #    input_arguments = [RealValue in self.inputs and self.attrs]
        # then ,we will loop for the api_params, construct a result list:
        #    if the name in ['name', 'dtype', 'out', 'output'], we will use the default value
        #    else, we will consume a input_arguments. (because the name is not corresponding, so we only use the order)

        api_params, api_defaults = parse_arg_and_kwargs(api)
        api_defaults = to_defaults_list(api_params, api_defaults)
        api_defaults = [
            Empty() for i in range(len(api_params) - len(api_defaults))
        ] + api_defaults
        assert len(api_defaults) == len(
            api_params
        ), "Error happens. contack xiongkun03 to solve."
        inputs_sig, attrs_sig, outputs_sig = kernel_sig
        inputs_and_attrs = inputs_sig + attrs_sig
        input_arguments = [
            op_proto_ins.get(name, Empty()) for name in inputs_sig
        ] + [
            parse_attri_value(name, op_proto_ins, op_proto_attrs)
            for name in attrs_sig
        ]
        results = []
        api_ignore_param_list = set(['name', 'dtype', 'out', 'output'])
        idx_of_op_proto_arguments = 0
        for idx, arg_name in enumerate(api_params):
            if arg_name in api_ignore_param_list:
                results.append(get_default(idx, api_defaults))
            else:
                if idx_of_op_proto_arguments < len(input_arguments):
                    tmp = input_arguments[idx_of_op_proto_arguments]
                    idx_of_op_proto_arguments += 1
                else:
                    tmp = Empty()  # use the default value

                if isinstance(tmp, Empty):
                    results.append(get_default(idx, api_defaults))
                else:
                    results.append(tmp)
        assert len(results) == len(api_params)
        return results

    @classmethod
    def assumption_assert_and_transform(cls, args, inp_num):
        """
        transform inputs by the following rules:
            1. [Tensor] -> Tensor
            2. [Tensor, Tensor, ...] -> list of Tensors
            3. None -> None
            4. Others: raise Error

        only support "X" is list of Tensor, currently don't support other structure like dict.
        """
        inp_args = [
            [inp] if inp is None else inp for inp in args[:inp_num]
        ]  # convert None -> [None]
        for inp in inp_args:
            assert isinstance(
                inp, list
            ), "currently only support `X` is [Tensor], don't support other structure."
        args = [inp[0] if len(inp) == 1 else inp for inp in inp_args] + args[
            inp_num:
        ]
        return args

    @classmethod
    def is_bfloat16_type(cls, np_type):
        if np_type == np.dtype('uint16'):
            return True
        return False


def apply_to_static(net, use_cinn):
    build_strategy = paddle.static.BuildStrategy()
    build_strategy.build_cinn_pass = use_cinn
    return paddle.jit.to_static(net, build_strategy=build_strategy)


class PrimNet(paddle.nn.Layer):
    def __init__(self, python_api):
        super(PrimNet, self).__init__()
        self.python_api = python_api

    def forward(self, args):
        out = self.python_api(*args)
        return out


class PrimForwardChecker:
    def __init__(self, op_test, place):
        self.checker_name = "PrimForwardChecker"
        self.place = place
        self.op_test = op_test
        self.save_eager_or_static_status()
        self.init()
        self.init_checker()

    def init(self):
        pass

    def save_eager_or_static_status(self):
        self.eager_mode = True if in_dygraph_mode() else False

    def recover_eager_or_static_status(self):
        if self.eager_mode:
            paddle.disable_static()
        else:
            paddle.enable_static()

    def init_checker(self):
        assert hasattr(
            self.op_test, 'prim_op_type'
247
        ), "if you want to test comp op, please set prim_op_type with \'prim\' or \'comp\' in setUp function."
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
        assert self.op_test.prim_op_type in [
            "comp",
            "prim",
        ], "prim_op_type must be comp or prim in setUp function."
        assert hasattr(
            self.op_test, 'dtype'
        ), "Please set dtype in setUp function."
        self.op_type = self.op_test.op_type
        self.prim_op_type = self.op_test.prim_op_type
        self.python_api = self.op_test.python_api
        self.dtype = np.dtype(self.op_test.dtype)
        self.inputs = self.op_test.inputs
        self.attrs = (
            self.op_test.attrs if hasattr(self.op_test, 'attrs') else {}
        )
        self.outputs = self.op_test.outputs
        self.init_checker_threshold()
        self.enable_fw_comp = (
            self.op_test.enable_fw_comp
            if hasattr(self.op_test, 'enable_fw_comp')
            else True
        )
        self.enable_rev_comp = (
            self.op_test.enable_rev_comp
            if hasattr(self.op_test, 'enable_rev_comp')
            else True
        )
        self.enable_cinn = (
            self.op_test.enable_cinn
            if hasattr(self.op_test, 'enable_cinn')
            else True
        )
        self.enable_check_eager_comp = (
            self.op_test.enable_check_eager_comp
            if hasattr(self.op_test, 'enable_check_eager_comp')
            else True
        )
        self.enable_check_static_comp = (
            self.op_test.enable_check_static_comp
            if hasattr(self.op_test, 'enable_check_static_comp')
            else True
        )
        self.enable_check_jit_comp = (
            self.op_test.enable_check_jit_comp
            if hasattr(self.op_test, 'enable_check_jit_comp')
            else True
        )
        self.enable_check_jit_comp_with_cinn = (
            self.op_test.enable_check_jit_comp_with_cinn
            if hasattr(self.op_test, 'enable_check_jit_comp_with_cinn')
            else True
        )
        self.only_prim = (
            self.op_test.only_prim
            if hasattr(self.op_test, 'only_prim')
            else False
        )
        self.kernel_sig = self.get_kernel_sig()

    def init_checker_threshold(self):
        if hasattr(self.op_test, 'jit_comp_rtol'):
            self.jit_comp_rtol = self.op_test.jit_comp_rtol
        else:
            self.jit_comp_rtol = (
                config.TOLERANCE[self.dtype]['jit_comp']['rtol']
                if self.dtype in config.TOLERANCE
                else 0
            )

        if hasattr(self.op_test, 'jit_comp_atol'):
            self.jit_comp_atol = self.op_test.jit_comp_atol
        else:
            self.jit_comp_atol = (
                config.TOLERANCE[self.dtype]['jit_comp']['atol']
                if self.dtype in config.TOLERANCE
                else 0
            )

        if hasattr(self.op_test, 'fw_comp_rtol'):
            self.fw_comp_rtol = self.op_test.fw_comp_rtol
        else:
            self.fw_comp_rtol = (
                config.TOLERANCE[self.dtype]['fw_comp']['rtol']
                if self.dtype in config.TOLERANCE
                else 0
            )

        if hasattr(self.op_test, 'fw_comp_atol'):
            self.fw_comp_atol = self.op_test.fw_comp_atol
        else:
            self.fw_comp_atol = (
                config.TOLERANCE[self.dtype]['fw_comp']['atol']
                if self.dtype in config.TOLERANCE
                else 0
            )

        if hasattr(self.op_test, 'rev_comp_rtol'):
            self.rev_comp_rtol = self.op_test.rev_comp_rtol
        else:
            self.rev_comp_rtol = (
                config.TOLERANCE[self.dtype]['rev_comp']['rtol']
                if self.dtype in config.TOLERANCE
                else 0
            )

        if hasattr(self.op_test, 'rev_comp_atol'):
            self.rev_comp_atol = self.op_test.rev_comp_atol
        else:
            self.rev_comp_atol = (
                config.TOLERANCE[self.dtype]['rev_comp']['atol']
                if self.dtype in config.TOLERANCE
                else 0
            )

        if hasattr(self.op_test, 'cinn_rtol'):
            self.cinn_rtol = self.op_test.cinn_rtol
        else:
            self.cinn_rtol = (
                config.TOLERANCE[self.dtype]['cinn']['rtol']
                if self.dtype in config.TOLERANCE
                else 0
            )

        if hasattr(self.op_test, 'cinn_atol'):
            self.cinn_atol = self.op_test.cinn_atol
        else:
            self.cinn_atol = (
                config.TOLERANCE[self.dtype]['cinn']['atol']
                if self.dtype in config.TOLERANCE
                else 0
            )

    def check(self):
381 382 383 384 385
        if (
            self.place is paddle.fluid.libpaddle.CUDAPlace
            and not paddle.is_compiled_with_cuda()
        ):
            return
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
        self.eager_desire = self.get_eager_desire()
        if self.enable_check_static_comp:
            self.check_static_comp()
        if self.enable_check_jit_comp:
            self.check_jit_comp()
        if self.enable_check_jit_comp_with_cinn:
            self.check_jit_comp_with_cinn()

        self.recover_eager_or_static_status()

    def get_kernel_sig(self):
        paddle.disable_static()
        if type(self.place) is paddle.fluid.libpaddle.CPUPlace:
            paddle.device.set_device("cpu")
        if type(self.place) is paddle.fluid.libpaddle.CUDAPlace:
            paddle.device.set_device("gpu:0")
        (
            eager_tensor_inputs,
            attrs_outputs,
            _,
        ) = self.get_eager_input_attr_and_inputdict()
        eager_tensor_outputs = self.get_eager_empty_output()
        kernel_sig = OpTestUtils._get_kernel_signature(
            self.op_type,
            eager_tensor_inputs,
            eager_tensor_outputs,
            attrs_outputs,
        )
        return kernel_sig

    def is_only_check_prim(self):
        return self.only_prim

    def get_eager_desire(self):
        paddle.disable_static()
        if type(self.place) is paddle.fluid.libpaddle.CPUPlace:
            paddle.device.set_device("cpu")
        if type(self.place) is paddle.fluid.libpaddle.CUDAPlace:
            paddle.device.set_device("gpu:0")
        (
            eager_tensor_inputs,
            attrs_outputs,
            _,
        ) = self.get_eager_input_attr_and_inputdict()
        args = OpTestUtils.prepare_python_api_arguments(
            self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig
        )
        inputs_sig, _, _ = self.kernel_sig
        args = OpTestUtils.assumption_assert_and_transform(
            args, len(inputs_sig)
        )
        ret = flatten(_as_list(self.python_api(*args)))
        ret = map_structure(lambda x: x.numpy(), ret)
        if OpTestUtils.is_bfloat16_type(self.dtype):
            ret = map_structure(lambda x: convert_uint16_to_float(x), ret)
        return ret

    def get_eager_input_attr_and_inputdict(self):
        attrs_outputs = {}
        for attrs_name in self.attrs:
            if self.attrs[attrs_name] is not None:
                attrs_outputs[attrs_name] = self.attrs[attrs_name]
        input_dict = {}
        eager_inputs = defaultdict(list)
        for name, item in self.inputs.items():
            if isinstance(item, list):
                for tup in item:
                    dtype = (
                        "bfloat16"
                        if OpTestUtils.is_bfloat16_type(tup[1].dtype)
                        else tup[1].dtype
                    )
                    x = paddle.to_tensor(
                        data=tup[1],
                        place=self.place,
                        stop_gradient=False,
                        dtype=dtype,
                    )
                    eager_inputs[name].append(x)
                    input_dict.update({str(tup[0]): x})
            else:
                dtype = (
                    "bfloat16"
                    if OpTestUtils.is_bfloat16_type(item.dtype)
                    else item.dtype
                )
                x = paddle.to_tensor(
                    data=item,
                    place=self.place,
                    stop_gradient=False,
                    dtype=dtype,
                )
                eager_inputs[name].append(x)
                input_dict.update({name: x})
        return eager_inputs, attrs_outputs, input_dict

    def get_eager_empty_output(self):
        eager_outputs = defaultdict(list)
        for name, item in self.outputs.items():
            if isinstance(item, list):
                for tup in item:
                    dtype = (
                        "bfloat16"
                        if OpTestUtils.is_bfloat16_type(tup[1].dtype)
                        else tup[1].dtype
                    )
                    x = paddle.to_tensor(
                        data=[],
                        place=self.place,
                        stop_gradient=False,
                        dtype=dtype,
                    )
                    eager_outputs[name].append(x)
            else:
                dtype = (
                    "bfloat16"
                    if OpTestUtils.is_bfloat16_type(item.dtype)
                    else item.dtype
                )
                x = paddle.to_tensor(
                    data=[], place=self.place, stop_gradient=False, dtype=dtype
                )
                eager_outputs[name].append(x)
        return eager_outputs

    def get_static_input_attr_inputdict_and_feed(self):
        attrs_outputs = {}
        for attrs_name in self.attrs:
            if self.attrs[attrs_name] is not None:
                attrs_outputs[attrs_name] = self.attrs[attrs_name]
        input_dict = {}
        static_inputs = defaultdict(list)
        feed = {}
        for name, item in self.inputs.items():
            if isinstance(item, list):
                for tup in item:
                    dtype = (
                        "bfloat16"
                        if OpTestUtils.is_bfloat16_type(tup[1].dtype)
                        else tup[1].dtype
                    )
                    x = paddle.static.data(
                        name=str(tup[0]), shape=tup[1].shape, dtype=dtype
                    )
                    x.stop_gradient = False
                    static_inputs[name].append(x)
                    feed.update({str(tup[0]): tup[1]})
                    input_dict.update({str(tup[0]): x})
            else:
                dtype = (
                    "bfloat16"
                    if OpTestUtils.is_bfloat16_type(item.dtype)
                    else item.dtype
                )
                x = paddle.static.data(name=name, shape=item.shape, dtype=dtype)
                x.stop_gradient = False
                static_inputs[name].append(x)
                feed.update({name: item})
                input_dict.update({name: x})
        return static_inputs, attrs_outputs, input_dict, feed

    def check_eager_comp(self):
        pass

    def check_static_comp(self):
        # forward comp only for comp op
        if self.prim_op_type == "prim":
            return
        paddle.enable_static()
        core._set_prim_forward_enabled(self.enable_fw_comp)
        startup_program, main_program = (
            paddle.static.Program(),
            paddle.static.Program(),
        )
        with paddle.static.program_guard(main_program, startup_program):
            (
                static_inputs,
                attrs,
                input_dict,
                feed,
            ) = self.get_static_input_attr_inputdict_and_feed()
            args = OpTestUtils.prepare_python_api_arguments(
                self.python_api, static_inputs, attrs, self.kernel_sig
            )
            inputs_sig, _, _ = self.kernel_sig
            args = OpTestUtils.assumption_assert_and_transform(
                args, len(inputs_sig)
            )
            ret = flatten(_as_list(self.python_api(*args)))
            paddle.incubate.autograd.to_prim(main_program.blocks)
        exe = paddle.static.Executor(self.place)
        exe.run(startup_program)
        ret = exe.run(main_program, feed=feed, fetch_list=ret)
        if OpTestUtils.is_bfloat16_type(self.dtype):
            ret = map_structure(lambda x: convert_uint16_to_float(x), ret)
        # check static forward
        if len(ret) != len(self.eager_desire):
            msg = (
                "The static comp forward api out tensor nums is different with eager forward api out tensor nums on %s."
                'when enable_fw_comp is %s, static comp forward api out tensor nums = %s, eager forward api out tensor nums = %s. \n'
                % (
                    str(self.place),
                    self.enable_fw_comp,
                    len(ret),
                    len(self.eager_desire),
                )
            )
            raise RuntimeError(msg)
        for i in range(len(ret)):
            if not np.allclose(
                ret[i],
                self.eager_desire[i],
                rtol=self.fw_comp_rtol,
                atol=self.fw_comp_atol,
            ):
                msg = (
                    'Check static comp forward api out failed. Mismatch between static comp '
                    'and eager on %s, when enable_fw_comp is %s,the forward api out tensor\'s index is : %d \n'
                    'static comp forward api out tensor:%s\n eager forward api out tensor:%s\n'
                    % (
                        str(self.place),
                        self.enable_fw_comp,
                        i,
                        ret[i],
                        self.eager_desire[i],
                    )
                )
                raise RuntimeError(msg)
        paddle.disable_static()
        core._set_prim_forward_enabled(False)

    def check_jit_comp(self):
        if self.prim_op_type == "prim":
            return
        paddle.disable_static()
        if type(self.place) == paddle.fluid.libpaddle.CPUPlace:
            paddle.device.set_device("cpu")
        if type(self.place) == paddle.fluid.libpaddle.CUDAPlace:
            paddle.device.set_device("gpu:0")
        atol = self.fw_comp_atol if self.enable_fw_comp else self.jit_comp_atol
        rtol = self.fw_comp_rtol if self.enable_fw_comp else self.jit_comp_rtol
        core._set_prim_forward_enabled(self.enable_fw_comp)
        (
            eager_tensor_inputs,
            attrs_outputs,
            _,
        ) = self.get_eager_input_attr_and_inputdict()
        args = OpTestUtils.prepare_python_api_arguments(
            self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig
        )
        inputs_sig, _, _ = self.kernel_sig
        args = OpTestUtils.assumption_assert_and_transform(
            args, len(inputs_sig)
        )
        net = PrimNet(self.python_api)
        net = apply_to_static(net, False)
        ret = flatten(_as_list(net(args)))
        ret = map_structure(lambda x: x.numpy(), ret)
        if OpTestUtils.is_bfloat16_type(self.dtype):
            ret = map_structure(lambda x: convert_uint16_to_float(x), ret)
        # check jit comp forward
        if len(ret) != len(self.eager_desire):
            msg = (
                "The jit comp forward api out tensor nums is different with eager forward api out tensor nums on %s."
                'when enable_fw_comp is %s, jit comp forward api out tensor nums = %s, eager forward api out tensor nums = %s. \n'
                % (
                    str(self.place),
                    self.enable_fw_comp,
                    len(ret),
                    len(self.eager_desire),
                )
            )
            raise RuntimeError(msg)
        for i in range(len(ret)):
            if not np.allclose(
                ret[i], self.eager_desire[i], rtol=rtol, atol=atol
            ):
                msg = (
                    'Check jit comp forward api out failed. Mismatch between jit comp '
                    'and eager on %s, when enable_fw_comp is %s,the forward api out tensor\'s index is : %d \n'
                    'jit comp forward api out tensor:%s\n eager forward api out tensor:%s\n'
                    % (
                        str(self.place),
                        self.enable_fw_comp,
                        i,
                        ret[i],
                        self.eager_desire[i],
                    )
                )
                raise RuntimeError(msg)
        core._set_prim_forward_enabled(False)
        net.forward.program_cache.clear()

    def check_jit_comp_with_cinn(self):
        if self.prim_op_type == "prim":
            return
        # cinn doesn't suppoort cpu place
        if (
            type(self.place) == paddle.fluid.libpaddle.CPUPlace
            and self.enable_cinn
            and core.is_compiled_with_cinn()
        ):
            return
        paddle.disable_static()
        atol = (
            self.cinn_atol
            if self.enable_cinn and core.is_compiled_with_cinn()
            else self.fw_comp_atol
        )
        rtol = (
            self.cinn_rtol
            if self.enable_cinn and core.is_compiled_with_cinn()
            else self.fw_comp_rtol
        )
        core._set_prim_forward_enabled(self.enable_fw_comp)
        if type(self.place) is paddle.fluid.libpaddle.CPUPlace:
            paddle.device.set_device("cpu")
        if type(self.place) is paddle.fluid.libpaddle.CUDAPlace:
            paddle.device.set_device("gpu:0")
        (
            eager_tensor_inputs,
            attrs_outputs,
            _,
        ) = self.get_eager_input_attr_and_inputdict()
        args = OpTestUtils.prepare_python_api_arguments(
            self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig
        )
        inputs_sig, _, _ = self.kernel_sig
        args = OpTestUtils.assumption_assert_and_transform(
            args, len(inputs_sig)
        )
        net = PrimNet(self.python_api)
        net = apply_to_static(
            net, core.is_compiled_with_cinn() and self.enable_cinn
        )
        ret = flatten(_as_list(net(args)))
        ret = map_structure(lambda x: x.numpy(), ret)
        if OpTestUtils.is_bfloat16_type(self.dtype):
            ret = map_structure(lambda x: convert_uint16_to_float(x), ret)
        # check jit comp forward
        if len(ret) != len(self.eager_desire):
            msg = (
                "The jit comp with cinn forward api out tensor nums is different with eager forward api out tensor nums on %s."
                'when enable_fw_comp is %s, enable_cinn is %s, jit comp forward api out tensor nums = %s, eager forward api out tensor nums = %s. \n'
                % (
                    str(self.place),
                    self.enable_fw_comp,
                    core.is_compiled_with_cinn() and self.enable_cinn,
                    len(ret),
                    len(self.eager_desire),
                )
            )
            raise RuntimeError(msg)
        for i in range(len(ret)):
            if not np.allclose(
                ret[i], self.eager_desire[i], rtol=rtol, atol=atol
            ):
                msg = (
                    'Check jit comp with cinn forward api out failed. Mismatch between jit comp and eager on %s, '
                    'when enable_fw_comp is %s, enable_cinn is %s, the forward api out tensor\'s index is : %d \n'
                    'jit comp forward api out tensor:%s\n eager forward api out tensor:%s\n'
                    % (
                        str(self.place),
                        self.enable_fw_comp,
                        core.is_compiled_with_cinn() and self.enable_cinn,
                        i,
                        ret[i],
                        self.eager_desire[i],
                    )
                )
                raise RuntimeError(msg)
        core._set_prim_forward_enabled(False)
        net.forward.program_cache.clear()


class PrimGradChecker(PrimForwardChecker):
    def __init__(
        self,
        op_test,
        place,
        inputs_to_check,
        output_names,
        no_grad_set,
        grad_outputs,
    ):
        PrimForwardChecker.__init__(self, op_test, place)
        self.inputs_to_check = inputs_to_check
        self.output_names = output_names
        self.no_grad_set = no_grad_set
        self.grad_outputs = grad_outputs

    def init(self):
        self.checker_name = "PrimGradChecker"

    def check(self):
781 782 783 784 785
        if (
            self.place is paddle.fluid.libpaddle.CUDAPlace
            and not paddle.is_compiled_with_cuda()
        ):
            return
786 787 788 789 790 791 792 793 794 795 796 797 798
        self.eager_desire = self.get_eager_desire()
        if self.enable_check_eager_comp:
            self.check_eager_comp()
        if self.enable_check_static_comp:
            self.check_static_comp()
        if self.enable_check_jit_comp:
            self.check_jit_comp()
        if self.enable_check_jit_comp_with_cinn:
            self.check_jit_comp_with_cinn()

        self.recover_eager_or_static_status()

    def get_output_dict(self, np_outputs, api_outputs, outputs_sig):
799 800
        assert len(api_outputs) <= len(outputs_sig), (
            "forward api outputs length must be the less than or equal to KernelSignature outputs,but recive %s and %s"
801 802
        ) % (len(api_outputs), len(outputs_sig))
        output_dict = {}
803 804
        for i in range(len(api_outputs)):
            output_name = outputs_sig[i]
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            if isinstance(np_outputs[output_name], list):
                for j, tup in enumerate(np_outputs[output_name]):
                    output_dict.update({tup[0]: api_outputs[i][j]})
            else:
                output_dict.update({output_name: api_outputs[i]})
        return output_dict

    def gen_eager_grad_outputs(self):
        if self.grad_outputs is None:
            return None
        eager_vs = []
        for np_v in self.grad_outputs:
            eager_vs.append(
                paddle.to_tensor(
                    data=np_v,
                    place=self.place,
                    dtype="bfloat16"
                    if OpTestUtils.is_bfloat16_type(np_v.dtype)
                    else np_v.dtype,
                )
            )
        return eager_vs

    def gen_static_grad_outputs_and_feed(self):
        if self.grad_outputs is None:
            return None, {}
        static_vs = []
        feed = {}
        for i, np_v in enumerate(self.grad_outputs):
            static_vs.append(
                paddle.static.data(
                    name='v_' + str(i),
                    shape=np_v.shape,
                    dtype="bfloat16"
                    if OpTestUtils.is_bfloat16_type(np_v.dtype)
                    else np_v.dtype,
                )
            )
            feed.update({'v_' + str(i): np_v})
        return static_vs, feed

    def gen_no_grad_set(self, var_dict):
        if self.no_grad_set is None:
            return None
        no_grad_set = set()
        for name in self.no_grad_set:
            if name in var_dict:
                no_grad_set.add(var_dict[name])
        return no_grad_set

    def get_eager_desire(self):
        paddle.disable_static()
        if type(self.place) is paddle.fluid.libpaddle.CPUPlace:
            paddle.device.set_device("cpu")
        if type(self.place) is paddle.fluid.libpaddle.CUDAPlace:
            paddle.device.set_device("gpu:0")
        (
            eager_tensor_inputs,
            attrs_outputs,
            inputs_dict,
        ) = self.get_eager_input_attr_and_inputdict()
        args = OpTestUtils.prepare_python_api_arguments(
            self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig
        )
        inputs_sig, _, outputs_sig = self.kernel_sig
        args = OpTestUtils.assumption_assert_and_transform(
            args, len(inputs_sig)
        )
        ret = _as_list(self.python_api(*args))
        outputs_dict = self.get_output_dict(self.outputs, ret, outputs_sig)
        ys = []
        if isinstance(self.output_names, list):
            for output_name in self.output_names:
                ys.append(outputs_dict[output_name])
        else:
            ys.append(outputs_dict[self.output_names])
        xs = []
        if isinstance(self.inputs_to_check, list):
            for input_name in self.inputs_to_check:
                xs.append(inputs_dict[input_name])
        else:
            xs.append(inputs_dict[self.inputs_to_check])
        vs = self.gen_eager_grad_outputs()
        no_grad_vars = self.gen_no_grad_set(
            var_dict={**inputs_dict, **outputs_dict}
        )
        ret = paddle.grad(
            ys, xs, vs, allow_unused=True, no_grad_vars=no_grad_vars
        )
        ret = map_structure(lambda x: x.numpy(), ret)
        if OpTestUtils.is_bfloat16_type(self.dtype):
            ret = map_structure(lambda x: convert_uint16_to_float(x), ret)
        return ret

    def check_eager_comp(self):
        if self.prim_op_type == "comp":
            return
        paddle.disable_static()
        if type(self.place) is paddle.fluid.libpaddle.CPUPlace:
            paddle.device.set_device("cpu")
        if type(self.place) is paddle.fluid.libpaddle.CUDAPlace:
            paddle.device.set_device("gpu:0")
        atol = self.rev_comp_atol
        rtol = self.rev_comp_rtol
        core._set_prim_backward_enabled(self.enable_rev_comp)
        actual_ret = self.get_eager_desire()
        # check static forward
        if len(actual_ret) != len(self.eager_desire):
            msg = (
                "The eager comp grad out tensor nums is different with eager grad out tensor nums on %s."
                'when enable_rev_comp is %s, eager comp grad api out tensor nums = %s, eager grad out tensor nums = %s. \n'
                % (
                    str(self.place),
                    self.enable_rev_comp,
                    len(actual_ret),
                    len(self.eager_desire),
                )
            )
            raise RuntimeError(msg)
        for i in range(len(actual_ret)):
            if not np.allclose(
                actual_ret[i],
                self.eager_desire[i],
                rtol=atol,
                atol=rtol,
            ):
                msg = (
                    'Check eager comp grad out failed. Mismatch between eager comp '
                    'and eager on %s, when enable_rev_comp is %s,the eager comp grad out tensor\'s index is : %d \n'
                    'eager comp grad out tensor:%s\n eager grad out tensor:%s\n'
                    % (
                        str(self.place),
                        self.enable_rev_comp,
                        i,
                        actual_ret[i],
                        self.eager_desire[i],
                    )
                )
                raise RuntimeError(msg)

    def check_static_comp(self):
        paddle.enable_static()
        if self.prim_op_type == "prim":
            core._set_prim_backward_enabled(self.enable_rev_comp)
        else:
            core._set_prim_forward_enabled(self.enable_fw_comp)
            core._set_prim_backward_enabled(self.enable_rev_comp)
        atol = self.rev_comp_atol if self.enable_rev_comp else self.fw_comp_atol
        rtol = self.rev_comp_rtol if self.enable_rev_comp else self.fw_comp_rtol
        startup_program, main_program = (
            paddle.static.Program(),
            paddle.static.Program(),
        )
        with paddle.static.program_guard(main_program, startup_program):
            (
                static_inputs,
                attrs,
                inputs_dict,
                feed,
            ) = self.get_static_input_attr_inputdict_and_feed()
            args = OpTestUtils.prepare_python_api_arguments(
                self.python_api, static_inputs, attrs, self.kernel_sig
            )
            inputs_sig, _, outputs_sig = self.kernel_sig
            args = OpTestUtils.assumption_assert_and_transform(
                args, len(inputs_sig)
            )
            fw_outs = _as_list(self.python_api(*args))
            outputs_dict = self.get_output_dict(
                self.outputs, fw_outs, outputs_sig
            )
            paddle.incubate.autograd.to_prim(main_program.blocks)
            ys = []
            if isinstance(self.output_names, list):
                for output_name in self.output_names:
                    ys.append(outputs_dict[output_name])
            else:
                ys.append(outputs_dict[self.output_names])
            xs = []
            if isinstance(self.inputs_to_check, list):
                for input_name in self.inputs_to_check:
                    xs.append(inputs_dict[input_name])
            else:
                xs.append(inputs_dict[self.inputs_to_check])
            vs, vs_feed = self.gen_static_grad_outputs_and_feed()
            feed.update(vs_feed)
            no_grad_vars = self.gen_no_grad_set(
                var_dict={**inputs_dict, **outputs_dict}
            )
            ret = paddle.static.gradients(ys, xs, vs, no_grad_set=no_grad_vars)
        exe = paddle.static.Executor(self.place)
        exe.run(startup_program)
        actual_ret = exe.run(main_program, feed=feed, fetch_list=ret)
        if OpTestUtils.is_bfloat16_type(self.dtype):
            actual_ret = map_structure(
                lambda x: convert_uint16_to_float(x), actual_ret
            )
        # check static grad out
        if len(actual_ret) != len(self.eager_desire):
            msg = (
                "The static comp grad out tensor nums is different with eager grad out tensor nums on %s."
                'when enable_fw_comp is %s,enable_rev_comp is %s, static comp grad out tensor nums = %s, eager grad out tensor nums = %s. \n'
                % (
                    str(self.place),
                    self.enable_fw_comp,
                    self.enable_rev_comp,
                    len(actual_ret),
                    len(self.eager_desire),
                )
            )
            raise RuntimeError(msg)
        for i in range(len(actual_ret)):
            if not np.allclose(
                actual_ret[i], self.eager_desire[i], rtol=rtol, atol=atol
            ):
                msg = (
                    'Check static comp grad out failed. Mismatch between static comp '
                    'and eager on %s, when enable_fw_comp is %s,enable_rev_comp is %s,the forward api out tensor\'s index is : %d \n'
                    'static comp grad out tensor:%s\n eager grad out tensor:%s\n'
                    % (
                        str(self.place),
                        self.enable_fw_comp,
                        self.enable_rev_comp,
                        i,
                        actual_ret[i],
                        self.eager_desire[i],
                    )
                )
                raise RuntimeError(msg)
        core._set_prim_forward_enabled(False)
        core._set_prim_backward_enabled(False)
        paddle.disable_static()

    def check_jit_comp(self):
        paddle.disable_static()
        if type(self.place) is paddle.fluid.libpaddle.CPUPlace:
            paddle.device.set_device("cpu")
        if type(self.place) is paddle.fluid.libpaddle.CUDAPlace:
            paddle.device.set_device("gpu:0")
        if self.prim_op_type == "prim":
            core._set_prim_backward_enabled(self.enable_rev_comp)
        else:
            core._set_prim_forward_enabled(self.enable_fw_comp)
            core._set_prim_backward_enabled(self.enable_rev_comp)
        atol = (
            self.fw_comp_atol
            if self.enable_fw_comp and not self.enable_rev_comp
            else self.jit_comp_atol
        )
        rtol = (
            self.fw_comp_rtol
            if self.enable_fw_comp and not self.enable_rev_comp
            else self.jit_comp_rtol
        )
        atol = self.rev_comp_atol if self.enable_rev_comp else atol
        rtol = self.rev_comp_rtol if self.enable_rev_comp else rtol
        (
            eager_tensor_inputs,
            attrs_outputs,
            inputs_dict,
        ) = self.get_eager_input_attr_and_inputdict()
        args = OpTestUtils.prepare_python_api_arguments(
            self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig
        )
        inputs_sig, _, outputs_sig = self.kernel_sig
        args = OpTestUtils.assumption_assert_and_transform(
            args, len(inputs_sig)
        )
        net = PrimNet(self.python_api)
        net = apply_to_static(net, False)
        out = _as_list(net(args))
        outputs_dict = self.get_output_dict(self.outputs, out, outputs_sig)
        ys = []
        if isinstance(self.output_names, list):
            for output_name in self.output_names:
                ys.append(outputs_dict[output_name])
        else:
            ys.append(outputs_dict[self.output_names])
        xs = []
        if isinstance(self.inputs_to_check, list):
            for input_name in self.inputs_to_check:
                xs.append(inputs_dict[input_name])
        else:
            xs.append(inputs_dict[self.inputs_to_check])
        vs = self.gen_eager_grad_outputs()
        no_grad_vars = self.gen_no_grad_set(
            var_dict={**inputs_dict, **outputs_dict}
        )
        ret = paddle.grad(
            ys, xs, vs, allow_unused=True, no_grad_vars=no_grad_vars
        )
        ret = map_structure(lambda x: x.numpy(), ret)
        if OpTestUtils.is_bfloat16_type(self.dtype):
            ret = map_structure(lambda x: convert_uint16_to_float(x), ret)
        # check jit comp grad out
        if len(ret) != len(self.eager_desire):
            msg = (
                "The jit comp grad out tensor nums is different with eager grad out tensor nums on %s."
                'when enable_fw_comp is %s, enable_rev_comp is %s, jit comp grad out tensor nums = %s, eager grad out tensor nums = %s. \n'
                % (
                    str(self.place),
                    self.enable_fw_comp,
                    self.enable_rev_comp,
                    len(ret),
                    len(self.eager_desire),
                )
            )
            raise RuntimeError(msg)
        for i in range(len(ret)):
            if not np.allclose(
                ret[i], self.eager_desire[i], rtol=rtol, atol=atol
            ):
                msg = (
                    'Check jit comp grad out failed. Mismatch between jit comp '
                    'and eager on %s, when enable_fw_comp is %s, enable_rev_comp is %s,the grad out tensor\'s index is : %d \n'
                    'jit comp grad out tensor:%s\n eager grad out out tensor:%s\n'
                    % (
                        str(self.place),
                        self.enable_fw_comp,
                        self.enable_rev_comp,
                        i,
                        ret[i],
                        self.eager_desire[i],
                    )
                )
                raise RuntimeError(msg)
        core._set_prim_forward_enabled(False)
        core._set_prim_backward_enabled(False)
        net.forward.program_cache.clear()

    def check_jit_comp_with_cinn(self):
        # cinn doesen't support cpu place
        if (
            type(self.place) is paddle.fluid.libpaddle.CPUPlace
            and self.enable_cinn
            and core.is_compiled_with_cinn()
        ):
            return
        paddle.disable_static()
        if type(self.place) is paddle.fluid.libpaddle.CPUPlace:
            paddle.device.set_device("cpu")
        if type(self.place) is paddle.fluid.libpaddle.CUDAPlace:
            paddle.device.set_device("gpu:0")
        if self.prim_op_type == "prim":
            core._set_prim_backward_enabled(self.enable_rev_comp)
        else:
            core._set_prim_forward_enabled(self.enable_fw_comp)
            core._set_prim_backward_enabled(self.enable_rev_comp)
        if self.enable_cinn and core.is_compiled_with_cinn():
            atol = self.cinn_atol
            rtol = self.cinn_rtol
        else:
            atol = (
                self.fw_comp_atol
                if self.enable_fw_comp and not self.enable_rev_comp
                else self.jit_comp_atol
            )
            rtol = (
                self.fw_comp_rtol
                if self.enable_fw_comp and not self.enable_rev_comp
                else self.jit_comp_rtol
            )
            atol = self.rev_comp_atol if self.enable_rev_comp else atol
            rtol = self.rev_comp_rtol if self.enable_rev_comp else rtol
        (
            eager_tensor_inputs,
            attrs_outputs,
            inputs_dict,
        ) = self.get_eager_input_attr_and_inputdict()
        args = OpTestUtils.prepare_python_api_arguments(
            self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig
        )
        inputs_sig, _, outputs_sig = self.kernel_sig
        args = OpTestUtils.assumption_assert_and_transform(
            args, len(inputs_sig)
        )
        net = PrimNet(self.python_api)
        net = apply_to_static(
            net, core.is_compiled_with_cinn() and self.enable_cinn
        )
        out = _as_list(net(args))
        outputs_dict = self.get_output_dict(self.outputs, out, outputs_sig)
        ys = []
        if isinstance(self.output_names, list):
            for output_name in self.output_names:
                ys.append(outputs_dict[output_name])
        else:
            ys.append(outputs_dict[self.output_names])
        xs = []
        if isinstance(self.inputs_to_check, list):
            for input_name in self.inputs_to_check:
                xs.append(inputs_dict[input_name])
        else:
            xs.append(inputs_dict[self.inputs_to_check])
        vs = self.gen_eager_grad_outputs()
        no_grad_vars = self.gen_no_grad_set(
            var_dict={**inputs_dict, **outputs_dict}
        )
        ret = paddle.grad(
            ys, xs, vs, allow_unused=True, no_grad_vars=no_grad_vars
        )
        ret = map_structure(lambda x: x.numpy(), ret)
        if OpTestUtils.is_bfloat16_type(self.dtype):
            ret = map_structure(lambda x: convert_uint16_to_float(x), ret)
        # check jit comp grad out
        if len(ret) != len(self.eager_desire):
            msg = (
                "The jit comp with cinn grad out tensor nums is different with eager grad out tensor nums on %s."
                'when enable_fw_comp is %s, enable_rev_comp is %s, enable_cinn is %s, jit comp grad out tensor nums = %s, eager grad out tensor nums = %s. \n'
                % (
                    str(self.place),
                    self.enable_fw_comp,
                    self.enable_rev_comp,
                    self.enable_cinn and core.is_compiled_with_cinn(),
                    len(ret),
                    len(self.eager_desire),
                )
            )
            raise RuntimeError(msg)
        for i in range(len(ret)):
            if not np.allclose(
                ret[i], self.eager_desire[i], rtol=rtol, atol=atol
            ):
                msg = (
                    'Check jit comp with cinn grad out failed. Mismatch between jit comp with cinn '
                    'and eager on %s, when enable_fw_comp is %s, enable_rev_comp is %s, enable_cinn is %s,'
                    'the grad out tensor\'s index is : %d ,jit comp with cinn grad out tensor:%s\n eager grad out out tensor:%s\n'
                    % (
                        str(self.place),
                        self.enable_fw_comp,
                        self.enable_rev_comp,
                        self.enable_cinn and core.is_compiled_with_cinn(),
                        i,
                        ret[i],
                        self.eager_desire[i],
                    )
                )
                raise RuntimeError(msg)
        core._set_prim_forward_enabled(False)
        core._set_prim_backward_enabled(False)
        net.forward.program_cache.clear()