cross_compiling_for_ios_en.md 5.7 KB
Newer Older
X
Xi Chen 已提交
1
# PaddlePaddle Compiling Guide for iOS
X
Xi Chen 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

This tutorial will walk you through cross compiling the PaddlePaddle library for iOS from the source in MacOS.

## Preparation

Apple provides Xcode for cross-compiling and IDE for iOS development. Download from App store or [here](https://developer.apple.com/cn/xcode/). To verify your installation, run command as follows

```bash
$ xcodebuild -version
Xcode 9.0
Build version 9A235
```

## Cross-compiling configurations

PaddlePaddle provides cross-compiling toolchain configuration documentation [cmake/cross_compiling/ios.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/ios.cmake), which has some default settings for frequently used compilers.

There are some mandatory environment variables need to be set before cross compiling PaddlePaddle for iOS:

- `CMAKE_SYSTEM_NAME`, CMake compiling target platform name, has to be `iOS`. PaddlePaddle CMake will compile all the third party dependencies and enforce some parameters (`WITH_C_API=ON``WITH_GPU=OFF``WITH_AVX=OFF``WITH_PYTHON=OFF``WITH_RDMA=OFF`) when this variable is set with value `iOS`.

- `WITH_C_API`, Whether to compile inference C-API library, has to be `ON`, since C-API is the only supported interface for inferencing in iOS.
- `WITH_SWIG_PY`, has to be `ON`. It's not supported to inference or train via swig in iOS.

Optional environment variables for iOS are:

- `IOS_PLATFORM`, either `OS` (default) or `SIMULATOR`.
  - `OS`, build targets ARM-based physical devices like iPhone or iPad.
  - `SIMULATOR`, build targets x86 architecture simulators.
- `IOS_ARCH`, target architecture. By default, all architecture types will be compiled. If you need to specify the architecture to compile for, please find valid values for different `IOS_PLATFORM` settings from the table below:

    <table class="docutils">
    <colgroup>
      <col width="35%" />
      <col width="65%" />
    </colgroup>
    <thead valign="bottom">
      <tr class="row-odd">
      <th class="head">IOS_PLATFORM</th>
      <th class="head">IOS_ARCH</th>
    </tr>
    </thead>
    <tbody valign="top">
      <tr class="row-even">
      <td>OS</td>
      <td>armv7, armv7s, arm64 </td>
    </tr>
    <tr class="row-odd">
      <td>SIMULATOR</td>
      <td>i386, x86_64 </td>
    </tr>
    </tbody>
    </table>

- `IOS_DEPLOYMENT_TARGET`, minimum iOS version to deployment, `7.0` by default.
- `IOS_ENABLE_BITCODE`, whether to enable [Bitcode](https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html#//apple_ref/doc/uid/TP40012582-CH35-SW3), values can be `ON/OFF`, `ON` by default.
- `IOS_USE_VECLIB_FOR_BLAS`, whether to use [vecLib](https://developer.apple.com/documentation/accelerate/veclib) framework for BLAS computing. values can be `ON/OFF`, `OFF` by default.
- `IOS_DEVELOPMENT_ROOT`, the path to `Developer` directory, can be explicitly set with your `/path/to/platform/Developer`. If left blank, PaddlePaddle will automatically pick the Xcode corresponding `platform`'s `Developer` directory based on your `IOS_PLATFORM` value.
- `IOS_SDK_ROOT`, the path to `SDK` root, can be explicitly set with your  `/path/to/platform/Developer/SDKs/SDK`. if left black, PaddlePaddle will pick the latest SDK in the directory of `IOS_DEVELOPMENT_ROOT`.

other settings:

- `USE_EIGEN_FOR_BLAS`, whether to use Eigen for matrix computing. effective when `IOS_USE_VECLIB_FOR_BLAS=OFF`. Values can be `ON/OFF`, `OFF` by default.
- `HOST_C/CXX_COMPILER`, host C/C++ compiler. Uses value from environment variable `CC/CXX` by default or `cc/c++` if `CC/CXX` doesn't exist.

some typical cmake configurations:

```bash
cmake -DCMAKE_SYSTEM_NAME=iOS \
      -DIOS_PLATFORM=OS \
      -DIOS_ARCH="armv7;arm64" \
      -DIOS_ENABLE_BITCODE=ON \
      -DIOS_USE_VECLIB_FOR_BLAS=ON \
      -DCMAKE_INSTALL_PREFIX=your/path/to/install \
      -DWITH_C_API=ON \
      -DWITH_TESTING=OFF \
      -DWITH_SWIG_PY=OFF \
      ..
```

```bash
cmake -DCMAKE_SYSTEM_NAME=iOS \
      -DIOS_PLATFORM=SIMULATOR \
      -DIOS_ARCH="x86_64" \
      -DIOS_USE_VECLIB_FOR_BLAS=ON \
      -DCMAKE_INSTALL_PREFIX=your/path/to/install \
      -DWITH_C_API=ON \
      -DWITH_TESTING=OFF \
      -DWITH_SWIG_PY=OFF \
      ..
```

You can set other compiling parameters for your own need. I.E. if you are trying to minimize the library size, set `CMAKE_BUILD_TYPE` with `MinSizeRel`; or if the performance is your concern, set `CMAKE_BUILD_TYPE` with `Release`. You can even manipulate the PaddlePaddle compiling procedure by manually set `CMAKE_C/CXX_FLAGS` values.

**TIPS for a better performance**:

- set `CMAKE_BUILD_TYPE` with `Release`
- set `IOS_USE_VECLIB_FOR_BLAS` with `ON`

## Compile and install

After CMake, run following commands, PaddlePaddle will download the compile 3rd party dependencies, compile and install PaddlePaddle inference library.

```
$ make
$ make install
```

Please Note: if you compiled PaddlePaddle in the source directory for other platforms, do remove `third_party` and `build` directory within the source with `rm -rf` to ensure that all the 3rd party libraries dependencies and PaddlePaddle is newly compiled with current CMake configuration.

`your/path/to/install` directory will have following directories after `compile` and `install`:

- `include`, contains all the C-API header files.
- `lib`, contains PaddlePaddle C-API static library.
- `third_party` contains all the 3rd party libraries.

Please note: if PaddlePaddle library need to support both physical devices and simulators, you will need to compile correspondingly, then merge fat library with `lipo`

Now you will have PaddlePaddle library compiled and installed, the fat library can be used in deep learning related iOS APPs. Please refer to C-API documentation for usage guides.