concat_kernel.cc 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/kernels/concat_kernel.h"
16 17 18 19

#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/complex.h"
20 21 22 23 24 25 26
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/phi/kernels/cpu/concat_and_split.h"
#include "paddle/phi/kernels/funcs/concat_funcs.h"
27

28
namespace phi {
29 30 31 32 33 34 35 36

template <typename T, typename Context>
void ConcatKernel(const Context& dev_ctx,
                  const std::vector<DenseTensor>& x,
                  const Scalar& axis_scalar,
                  DenseTensor* out) {
  int64_t axis = axis_scalar.to<int64_t>();

37
  axis = phi::funcs::ComputeAxis(axis, x[0].dims().size());
38

39
  std::vector<phi::DDim> x_dims;
40 41 42 43
  for (size_t i = 0; i < x.size(); ++i) {
    x_dims.push_back(x[i].dims());
  }

44
  phi::DDim out_dims = phi::funcs::ComputeAndCheckShape(true, x_dims, axis);
45
  out->Resize(out_dims);
46
  out->mutable_data<T>(dev_ctx.GetPlace());
47 48 49 50 51 52 53 54 55 56

  // If axis is 0, the lod of the output is not the same as inputs.
  if (axis == 0 && x[0].lod().size() > 0) {
    size_t lod_size_0 = x[0].lod().size();
    size_t lod_size = lod_size_0;
    for (size_t i = 1; i < x.size(); ++i) {
      if (x[i].lod().size() > 0) {
        PADDLE_ENFORCE_EQ(
            x[i].lod().size(),
            lod_size_0,
57
            phi::errors::Unimplemented(
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
                "The lod level of all input LoDTensors should be same. "
                "Maybe different lod level of input LoDTensors can concat,"
                "it is not supported currently. The lod level of %dth input "
                "is %d and first input is %d.",
                i,
                x[i].lod().size(),
                lod_size_0));
      } else {
        lod_size = 0;
        break;
      }
    }
    if (lod_size) {
      auto* out_lod = out->mutable_lod();
      for (size_t i = 1; i < x.size(); ++i) {
73 74
        auto in_lod = phi::ConvertToLengthBasedLoD(x[i].lod());
        phi::AppendLoD(out_lod, in_lod);
75 76 77 78 79 80 81 82 83 84 85
      }
    }
  }

  // Sometimes direct copies will be faster, this maybe need deeply analysis.
  if (axis == 0 && x.size() < 10) {
    size_t output_offset = 0;
    for (auto& in : x) {
      if (in.numel() == 0UL) {
        continue;
      }
86 87
      auto in_stride = phi::stride_numel(in.dims());
      auto out_stride = phi::stride_numel(out->dims());
88 89 90 91 92 93 94 95 96 97 98
      paddle::operators::StridedNumelCopyWithAxis<T>(
          dev_ctx,
          axis,
          out->data<T>() + output_offset,
          out_stride,
          in.data<T>(),
          in_stride,
          in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
99
    std::vector<phi::DenseTensor> inputs;
100 101 102 103 104 105 106 107 108 109 110
    for (size_t j = 0; j < x.size(); ++j) {
      if (x[j].numel() > 0) {
        inputs.push_back(x[j]);
      } else {
        continue;
      }
    }
    ConcatImpl<T, Context>(dev_ctx, inputs, axis, out);
  }
}

111
}  // namespace phi
112

113
PD_REGISTER_KERNEL(concat,
114 115
                   CPU,
                   ALL_LAYOUT,
116
                   phi::ConcatKernel,
117 118 119 120 121 122
                   float,
                   double,
                   bool,
                   int64_t,
                   int,
                   uint8_t,
123 124 125
                   phi::dtype::float16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}