parallelizer_v2.py 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
16 17
import time
import logging
18 19 20

from paddle.fluid import program_guard
from paddle.fluid.backward import append_backward
21
from paddle.fluid.framework import unique_name
22 23 24 25
from paddle.distributed.passes import new_pass

from .reshard import Resharder
from .partitioner import Partitioner
26 27 28
from .utils import set_grad_var_shape
from .process_group import get_world_process_group
from ..utils.log_utils import get_logger
29 30 31 32 33 34 35


class Parallelizer:
    def __init__(self, mode, completer, dist_context):
        self._mode = mode
        self._completer = completer
        self._dist_context = dist_context
36
        assert self._dist_context._is_initialized
37 38
        self._pass_context = self._dist_context.pass_context
        self._strategy = self._dist_context.strategy
39
        self._logger = get_logger(logging.INFO)
40 41 42 43 44

    def parallel_all(self):
        world_process_group = get_world_process_group()
        all_ranks = world_process_group.ranks
        for rank in all_ranks:
45
            # self._dist_context._backup(serial=True, dist=True)
46
            self.parallel(rank)
47
            # self._dist_context._restore(serial=True, dist=True)
48 49 50 51 52 53 54

    def parallel(self, rank):
        serial_main_program = self._dist_context.serial_main_program
        serial_startup_program = self._dist_context.serial_startup_program
        serial_optimizer = self._dist_context.serial_optimizer
        if self._mode == "train" and serial_optimizer:
            # Generate backward
55
            serial_loss = self._dist_context.serial_loss
56 57 58
            params_grads = self._generate_backward(
                serial_main_program, serial_startup_program, serial_loss
            )
59
            # Apply pre optimization passes
60
            time0 = time.time()
61 62 63 64 65 66 67 68 69 70 71
            (
                serial_main_program,
                serial_startup_program,
                params_grads,
            ) = self._apply_pre_optimization(
                serial_main_program,
                serial_startup_program,
                serial_loss,
                serial_optimizer,
                params_grads,
            )
72
            self._logger.debug(
73 74 75 76
                "within parallel apply_pre_optimization time: {}, mode {}".format(
                    time.time() - time0, self._mode
                )
            )
77
            # Do logical partition
78
            time0 = time.time()
79
            partitioner = Partitioner(self._dist_context, rank)
80 81 82 83 84 85 86
            (
                dist_main_prog,
                dist_startup_prog,
                dist_params_grads,
            ) = partitioner.partition(
                serial_main_program, serial_startup_program, params_grads
            )
87
            self._logger.debug(
88
                "within parallel partitioner time: {}, mode {}".format(
89 90 91
                    time.time() - time0, self._mode
                )
            )
92
            # Generate optimizer
93
            time0 = time.time()
94 95 96 97 98 99
            self._generate_optimizer(
                dist_main_prog,
                dist_startup_prog,
                serial_optimizer,
                dist_params_grads,
            )
100
            self._logger.debug(
101
                "within parallel optimizer time: {}, mode {}".format(
102 103 104
                    time.time() - time0, self._mode
                )
            )
105
            # Do reshard process
106
            time0 = time.time()
107
            set_grad_var_shape(dist_main_prog, self._dist_context)
108 109 110 111 112 113 114
            resharder = Resharder(
                dist_main_prog,
                dist_startup_prog,
                rank,
                self._dist_context,
                dist_params_grads,
            )
115
            resharder.reshard()
116
            self._logger.debug(
117
                "within parallel reshard time: {}, mode {}".format(
118 119 120
                    time.time() - time0, self._mode
                )
            )
121
            # Apply post optimization passes
122
            time0 = time.time()
123 124 125
            self._apply_post_optimization(
                dist_main_prog, dist_startup_prog, rank, dist_params_grads
            )
126
            self._logger.debug(
127 128 129 130
                "within parallel apply_post_optimization time: {}, mode {}".format(
                    time.time() - time0, self._mode
                )
            )
131 132
        else:
            # Apply pre optimization passes
133
            time0 = time.time()
134 135 136
            self._apply_pre_optimization(
                serial_main_program, serial_startup_program, None, None, None
            )
137
            self._logger.debug(
138 139 140 141
                "within parallel apply_pre_optimization time: {}, mode {}".format(
                    time.time() - time0, self._mode
                )
            )
142
            # Do logical partition
143
            time0 = time.time()
144
            partitioner = Partitioner(self._dist_context, rank)
145 146 147 148 149 150 151
            (
                dist_main_prog,
                dist_startup_prog,
                dist_params_grads,
            ) = partitioner.partition(
                serial_main_program, serial_startup_program, []
            )
152
            # Do reshard process
153
            self._logger.debug(
154
                "within parallel partitioner time: {}, mode {}".format(
155 156 157
                    time.time() - time0, self._mode
                )
            )
158 159 160 161 162
            micro_bsz = (
                1
                if not self._strategy.pipeline.enable
                else self._strategy.pipeline.micro_batch_size
            )
163
            time0 = time.time()
164 165 166 167 168 169
            resharder = Resharder(
                dist_main_prog,
                dist_startup_prog,
                rank,
                self._dist_context,
                [],
170
                micro_bsz,
171
            )
172
            resharder.reshard()
173
            self._logger.debug(
174
                "within parallel reshard time: {}, mode {}".format(
175 176 177 178 179 180 181 182 183 184 185 186 187
                    time.time() - time0, self._mode
                )
            )
            # Apply post optimization passes
            time0 = time.time()
            self._apply_post_optimization(
                dist_main_prog, dist_startup_prog, rank, dist_params_grads
            )
            self._logger.debug(
                "within parallel apply_post_optimization time: {}, mode {}".format(
                    time.time() - time0, self._mode
                )
            )
188 189
        # Clone program for test
        if self._mode != 'train':
190
            pipeline_opt = dist_main_prog._pipeline_opt
191 192
            dist_main_prog = dist_main_prog.clone(for_test=True)
            dist_startup_prog = dist_startup_prog.clone(for_test=True)
193
            dist_main_prog._pipeline_opt = pipeline_opt
194 195 196 197 198 199 200 201

        # Store the distributed programs for further usages
        self._dist_context.dist_main_programs[rank] = dist_main_prog
        self._dist_context.dist_startup_programs[rank] = dist_startup_prog

    def _generate_backward(self, main_program, startup_program, loss):
        with program_guard(main_program, startup_program):
            params_grads = append_backward(
202 203
                loss, distop_context=self._dist_context.dist_op_context
            )
204 205 206 207
        self._completer.complete_backward_annotation(main_program)
        self._dist_context.block_state.parse_backward_blocks(main_program)
        return params_grads

208 209 210
    def _generate_optimizer(
        self, main_program, startup_program, optimizer, params_grads
    ):
211 212
        # NOTE: `apply_gradients` will add an Accumulator for a parameter only once,
        # but optimizer will be called repeatedly in re-launch, so optimizer need to be copied.
213
        optimizer = copy.deepcopy(optimizer)
214
        self._dist_context._serial_optimizer = optimizer
215
        with program_guard(main_program, startup_program):
216 217
            with unique_name.guard("opt_"):
                optimizer_ops = optimizer.apply_gradients(params_grads)
218 219 220
        self._completer.complete_update_annotation(main_program)
        return optimizer_ops

221 222 223
    def _apply_pre_optimization(
        self, main_program, startup_program, loss, optimizer, params_grads
    ):
224 225
        if self._strategy is None:
            return
226 227 228

        # apply quantization pass
        # The pass can be applied when mode must be 'train'
229 230
        if self._mode == 'train' and self._strategy.qat.enable:
            config = copy.deepcopy(self._strategy.qat.to_dict())
231 232 233
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            auto_parallel_quantization_pass = new_pass(
234 235 236 237 238
                "auto_parallel_quantization", config
            )
            auto_parallel_quantization_pass.apply(
                [main_program], [startup_program], self._pass_context
            )
239 240 241 242
            main_program = self._pass_context.get_attr("main_program")
            startup_program = self._pass_context.get_attr("startup_program")
            params_grads = self._pass_context.get_attr("params_grads")

243
        # apply amp pass on train/eval/predict
244
        if self._strategy.amp.enable:
245
            config = copy.deepcopy(self._strategy.amp.to_dict())
246 247 248
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            config["loss"] = loss
249 250
            config["input_data"] = (
                self._dist_context.serial_feed_vars["inputs"]
251
                + self._dist_context.serial_feed_vars["labels"]
252
            )
253 254 255
            if config["use_pure_fp16"]:
                config["base_opt"] = optimizer
                auto_parallel_fp16_pass = new_pass("auto_parallel_fp16", config)
256 257 258
                auto_parallel_fp16_pass.apply(
                    [main_program], [startup_program], self._pass_context
                )
259 260
            else:
                auto_parallel_amp_pass = new_pass("auto_parallel_amp", config)
261 262 263
                auto_parallel_amp_pass.apply(
                    [main_program], [startup_program], self._pass_context
                )
264 265

        # apply recompute pass
266
        # recompute is then train-only optimization
267 268
        if self._mode == "train" and self._strategy.recompute.enable:
            config = copy.deepcopy(self._strategy.recompute.to_dict())
269 270 271
            config["dist_context"] = self._dist_context
            config["no_grad_set"] = None
            config["loss"] = loss
272 273 274 275 276 277
            auto_parallel_recompute_pass = new_pass(
                "auto_parallel_recompute", config
            )
            auto_parallel_recompute_pass.apply(
                [main_program], [startup_program], self._pass_context
            )
278

279 280
        return main_program, startup_program, params_grads

281 282 283
    def _apply_post_optimization(
        self, main_program, startup_program, rank, params_grads
    ):
284 285
        if self._strategy is None:
            return
286 287 288 289 290

        # data parallel optimization
        config = {}
        config["dist_context"] = self._dist_context
        config["global_rank"] = rank
291
        config["use_sharding"] = self._strategy.sharding.enable
292 293 294
        dp_pass = new_pass("auto_parallel_data_parallel_optimization", config)
        dp_pass.apply([main_program], [startup_program], self._pass_context)

295 296
        if self._strategy.sharding.enable:
            config = copy.deepcopy(self._strategy.sharding.to_dict())
297 298 299
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            config["global_rank"] = rank
300 301 302 303 304 305
            auto_parallel_sharding_pass = new_pass(
                "auto_parallel_sharding", config
            )
            auto_parallel_sharding_pass.apply(
                [main_program], [startup_program], self._pass_context
            )
306
            params_grads = self._pass_context.get_attr("params_grads")
307

308 309
        # GradClip is train-only optimization
        if self._mode == "train":
310
            config = copy.deepcopy(self._strategy.sharding.to_dict())
311 312 313
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            config["rank_id"] = rank
314 315 316 317 318 319 320 321 322 323 324 325 326
            auto_parallel_clip_pass = new_pass(
                "auto_parallel_grad_clip", config
            )
            auto_parallel_clip_pass.apply(
                [main_program], [startup_program], self._pass_context
            )

        if self._strategy.pipeline.enable:
            self._strategy.gradient_merge.enable = True
            self._strategy.gradient_merge.k_steps = (
                self._strategy.pipeline.accumulate_steps
            )
            self._strategy.gradient_merge.avg = True
327 328

        # gradient_merge is then train-only optimization
329 330
        if self._mode == "train" and self._strategy.gradient_merge.enable:
            config = copy.deepcopy(self._strategy.gradient_merge.to_dict())
331 332 333
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            auto_parallel_gradient_merge_pass = new_pass(
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
                "auto_parallel_gradient_merge_pass", config
            )
            auto_parallel_gradient_merge_pass.apply(
                [main_program], [startup_program], self._pass_context
            )

        if self._strategy.pipeline.enable:
            config = copy.deepcopy(self._strategy.pipeline.to_dict())
            config["dist_context"] = self._dist_context
            auto_parallel_pipeline_pass = new_pass(
                "auto_parallel_pipeline", config
            )
            auto_parallel_pipeline_pass.apply(
                [main_program], [startup_program], self._pass_context
            )