rnn.py 18.7 KB
Newer Older
X
Xing Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .layers import Layer
from paddle.fluid import layers
import copy

__all__ = ['LSTMCell', 'GRUCell']


class LSTMCell(Layer):
    """
    LSTMCell implementation using basic operators.
    There are two LSTMCell version, the default one is compatible with CUDNN LSTM implementation.
    The algorithm can be described as the equations below.
        .. math::
            i_t &= sigmoid(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)
            f_t &= sigmoid(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)
            o_t &= sigmoid(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)
            \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
            c_t &= f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t}
            h_t &= o_t \\odot tanh(c_t)
    The other LSTMCell version is compatible with the BasicLSTMUnit used in static graph.
    The algorithm can be described as the equations below.
            i_t &= sigmoid(W_{ix}x_{t} + W_{ih}h_{t-1} + b_i)
            f_t &= sigmoid(W_{fx}x_{t} + W_{fh}h_{t-1} + b_f + forget_bias )
            o_t &= sigmoid(W_{ox}x_{t} + W_{oh}h_{t-1} + b_o)
            \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
            c_t &= f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t}
            h_t &= o_t \\odot tanh(c_t)

    Args:
        hidden_size (integer): The hidden size used in the Cell.
        input_size (integer): The input size used in the Cell.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, lstm_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of LSTM unit.
            If it is set to None or one attribute of ParamAttr, lstm_unit will 
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized as zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cells (actNode).
                             Default: 'fluid.layers.tanh'
        forget_bias(float|1.0): forget bias used when computing forget gate. This 
            is not used in default LSTMCell implementation (CUDNN compatiable)
        use_cudnn_impl(bool|True): whether to use CUDNN compatible LSTMCell
        dtype(string): data type used in this unit
    
    Returns:
        None

    Examples:
        .. code-block:: python
            from paddle import fluid
            import paddle.fluid.core as core
            from paddle.fluid.dygraph.rnn import LSTMCell
            import numpy as np

            batch_size = 64
            input_size = 128
            hidden_size = 256

            step_input_np = np.random.uniform(-0.1, 0.1, (
                batch_size, input_size)).astype('float64')
            pre_hidden_np = np.random.uniform(-0.1, 0.1, (
                batch_size, hidden_size)).astype('float64')
            pre_cell_np = np.random.uniform(-0.1, 0.1, (
                batch_size, hidden_size)).astype('float64')

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
            else:
                place = core.CPUPlace()

            with fluid.dygraph.guard(place):
                cudnn_lstm = LSTMCell(hidden_size, input_size)
                step_input_var = fluid.dygraph.to_variable(step_input_np)
                pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np)
                pre_cell_var = fluid.dygraph.to_variable(pre_cell_np)
                new_hidden, new_cell = cudnn_lstm(step_input_var, pre_hidden_var, pre_cell_var) 
    """

    def __init__(self,
                 hidden_size,
                 input_size,
                 param_attr=None,
                 bias_attr=None,
                 gate_activation=None,
                 activation=None,
                 forget_bias=1.0,
                 use_cudnn_impl=True,
                 dtype='float64'):
        super(LSTMCell, self).__init__(dtype)

        self._hidden_size = hidden_size
        self._input_size = input_size
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
        self._gate_activation = gate_activation or layers.sigmoid
        self._activation = activation or layers.tanh
        self._use_cudnn_impl = use_cudnn_impl

        if self._use_cudnn_impl:

            if self._param_attr is not None and self._param_attr.name is not None:
                weight_ih_param_attr = copy.deepcopy(self._param_attr)
                weight_hh_param_attr = copy.deepcopy(self._param_attr)
                weight_ih_param_attr.name += "_weight_ih"
                weight_hh_param_attr.name += "_weight_hh"
            else:
                weight_ih_param_attr = self._param_attr
                weight_hh_param_attr = self._param_attr

            if self._bias_attr is not None and self._bias_attr.name is not None:
                bias_ih_param_attr = copy.deepcopy(self._bias_attr)
                bias_hh_param_attr = copy.deepcopy(self._bias_attr)
                bias_ih_param_attr.name += "_bias_ih"
                bias_hh_param_attr.name += "_bias_hh"
            else:
                bias_ih_param_attr = self._bias_attr
                bias_hh_param_attr = self._bias_attr

            self._weight_ih = self.create_parameter(
                attr=weight_ih_param_attr,
                shape=[self._input_size, 4 * self._hidden_size],
                dtype=self._dtype)

            self._weight_hh = self.create_parameter(
                attr=weight_hh_param_attr,
                shape=[self._hidden_size, 4 * self._hidden_size],
                dtype=self._dtype)

            self._bias_ih = self.create_parameter(
                attr=bias_ih_param_attr,
                shape=[4 * self._hidden_size],
                dtype=self._dtype,
                is_bias=True)
            self._bias_hh = self.create_parameter(
                attr=bias_hh_param_attr,
                shape=[4 * self._hidden_size],
                dtype=self._dtype,
                is_bias=True)

        else:

            self._forget_bias = layers.fill_constant(
                [1], dtype=dtype, value=forget_bias)
            self._forget_bias.stop_gradient = False

            self._weight = self.create_parameter(
                attr=self._param_attr,
                shape=[
                    self._input_size + self._hidden_size, 4 * self._hidden_size
                ],
                dtype=dtype)

            self._bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[4 * self._hidden_size],
                dtype=dtype,
                is_bias=True)

    def forward(self, input, pre_hidden, pre_cell):

        if self._use_cudnn_impl:

            igates = layers.matmul(input, y=self._weight_ih)
            igates = layers.elementwise_add(igates, self._bias_ih)
            hgates = layers.matmul(pre_hidden, self._weight_hh)
            hgates = layers.elementwise_add(hgates, self._bias_hh)

            chunked_igates = layers.split(igates, num_or_sections=4, dim=1)
            chunked_hgates = layers.split(hgates, num_or_sections=4, dim=1)

            ingate = layers.elementwise_add(chunked_igates[0],
                                            chunked_hgates[0])
            ingate = self._gate_activation(ingate)

            forgetgate = layers.elementwise_add(chunked_igates[1],
                                                chunked_hgates[1])
            forgetgate = self._gate_activation(forgetgate)

            cellgate = layers.elementwise_add(chunked_igates[2],
                                              chunked_hgates[2])
            cellgate = self._activation(cellgate)

            outgate = layers.elementwise_add(chunked_igates[3],
                                             chunked_hgates[3])
            outgate = self._gate_activation(outgate)

            new_cell = (forgetgate * pre_cell) + (ingate * cellgate)
            new_hidden = outgate * self._activation(new_cell)

        else:

            concat_input_hidden = layers.concat([input, pre_hidden], 1)
            gate_input = layers.matmul(x=concat_input_hidden, y=self._weight)

            gate_input = layers.elementwise_add(gate_input, self._bias)
            i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1)
            new_cell = layers.elementwise_add(
                layers.elementwise_mul(
                    pre_cell,
                    self._gate_activation(
                        layers.elementwise_add(f, self._forget_bias))),
                layers.elementwise_mul(layers.sigmoid(i), layers.tanh(j)))
            new_hidden = self._activation(new_cell) * self._gate_activation(o)

        return new_hidden, new_cell


class GRUCell(Layer):
    """
    GRU implementation using basic operators.
    There are two GRUCell version, the default one is compatible with CUDNN GRU implementation.
    The algorithm can be described as the equations below.
        .. math::
            u_t & = sigmoid(W_{ux} x_{t} + b_ux + W_{uh} h_{t-1} + b_uh)
            r_t & = sigmoid(W_{rx} x_{t} + b_rx + W_{rh} h_{t-1} + b_rh)
            \\tilde{h_{t}} & = tanh(W_{cx} x_{t} + b_cx + r_t \\odot (W_{ch} h_{t-1} + b_ch))
            h_t & = u_t h_{t-1} + (1-u_t) \\tilde{h_{t}}
    The other LSTMCell version is compatible with the BasicGRUUnit used in static graph.
    The algorithm can be described as the equations below.
            u_t & = sigmoid(W_{ux} x_{t} + W_{uh} h_{t-1} + b_u)
            r_t & = sigmoid(W_{rx} x_{t} + W_{rh} h_{t-1} + b_r)
            \\tilde{h_{t}} & = tanh(W_{cx} x_{t} + W_{ch} \\odot(r_t, h_{t-1}) + b_m)
            h_t & = u_t h_{t-1} + (1-u_t) \\tilde{h_{t}}
    Args:
        hidden_size (integer): The hidden size used in the Cell.
        input_size (integer): The input size used in the Cell.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of GRU unit.
            If it is set to None or one attribute of ParamAttr, gru_unit will 
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cell (actNode).
                             Default: 'fluid.layers.tanh'
        use_cudnn_impl(bool|True): whether to use CUDNN compatible LSTMCell
        dtype(string): data type used in this unit
    
    Returns:
        None

    Examples:
        .. code-block:: python
            from paddle import fluid
            import paddle.fluid.core as core
            from paddle.fluid.dygraph.rnn import GRUCell
            import numpy as np

            batch_size = 64
            input_size = 128
            hidden_size = 256

            step_input_np = np.random.uniform(-0.1, 0.1, (
            batch_size, input_size)).astype('float64')
            pre_hidden_np = np.random.uniform(-0.1, 0.1, (
            batch_size, hidden_size)).astype('float64')

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
            else:
                place = core.CPUPlace()

            with fluid.dygraph.guard(place):
                cudnn_gru = GRUCell(hidden_size, input_size)
                step_input_var = fluid.dygraph.to_variable(step_input_np)
                pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np)
    """

    def __init__(self,
                 hidden_size,
                 input_size,
                 param_attr=None,
                 bias_attr=None,
                 gate_activation=None,
                 activation=None,
                 use_cudnn_impl=True,
                 dtype='float64'):
        super(GRUCell, self).__init__()

        self._hidden_size = hidden_size
        self._input_size = input_size
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
        self._gate_activation = gate_activation or layers.sigmoid
        self._activation = activation or layers.tanh
        self._use_cudnn_impl = use_cudnn_impl

        if self._use_cudnn_impl:

            if self._param_attr is not None and self._param_attr.name is not None:
                weight_ih_param_attr = copy.deepcopy(self._param_attr)
                weight_hh_param_attr = copy.deepcopy(self._param_attr)
                weight_ih_param_attr.name += "_weight_ih"
                weight_hh_param_attr.name += "_weight_hh"
            else:
                weight_ih_param_attr = self._param_attr
                weight_hh_param_attr = self._param_attr

            if self._bias_attr is not None and self._bias_attr.name is not None:
                bias_ih_param_attr = copy.deepcopy(self._bias_attr)
                bias_hh_param_attr = copy.deepcopy(self._bias_attr)
                bias_ih_param_attr.name += "_bias_ih"
                bias_hh_param_attr.name += "_bias_hh"
            else:
                bias_ih_param_attr = self._bias_attr
                bias_hh_param_attr = self._bias_attr

            self._weight_ih = self.create_parameter(
                attr=weight_ih_param_attr,
                shape=[self._input_size, 3 * self._hidden_size],
                dtype=self._dtype)

            self._weight_hh = self.create_parameter(
                attr=weight_hh_param_attr,
                shape=[self._hidden_size, 3 * self._hidden_size],
                dtype=self._dtype)

            self._bias_ih = self.create_parameter(
                attr=bias_ih_param_attr,
                shape=[3 * self._hidden_size],
                dtype=self._dtype,
                is_bias=True)
            self._bias_hh = self.create_parameter(
                attr=bias_hh_param_attr,
                shape=[3 * self._hidden_size],
                dtype=self._dtype,
                is_bias=True)

        else:

            if self._param_attr is not None and self._param_attr.name is not None:
                gate_weight_param_attr = copy.deepcopy(self._param_attr)
                candidate_weight_param_attr = copy.deepcopy(self._param_attr)
                gate_weight_param_attr.name += "_gate_weight"
                candidate_weight_param_attr.name += "_candidate_weight"
            else:
                gate_weight_param_attr = self._param_attr
                candidate_weight_param_attr = self._param_attr

            if self._bias_attr is not None and self._bias_attr.name is not None:
                gate_bias_param_attr = copy.deepcopy(self._bias_attr)
                candidate_bias_param_attr = copy.deepcopy(self._bias_attr)
                gate_bias_param_attr.name += "_gate_bias"
                candidate_bias_param_attr.name += "_candidate_bias"
            else:
                gate_bias_param_attr = self._bias_attr
                candidate_bias_param_attr = self._bias_attr

            self._gate_weight = self.create_parameter(
                attr=gate_weight_param_attr,
                shape=[
                    self._input_size + self._hidden_size, 2 * self._hidden_size
                ],
                dtype=dtype)

            self._candidate_weight = self.create_parameter(
                attr=candidate_weight_param_attr,
                shape=[
                    self._input_size + self._hidden_size, self._hidden_size
                ],
                dtype=dtype)

            self._gate_bias = self.create_parameter(
                attr=gate_bias_param_attr,
                shape=[2 * self._hidden_size],
                dtype=dtype,
                is_bias=True)
            self._candidate_bias = self.create_parameter(
                attr=candidate_bias_param_attr,
                shape=[self._hidden_size],
                dtype=dtype,
                is_bias=True)

    def forward(self, input, pre_hidden):

        if self._use_cudnn_impl:

            igates = layers.matmul(input, y=self._weight_ih)
            igates = layers.elementwise_add(igates, self._bias_ih)
            hgates = layers.matmul(pre_hidden, self._weight_hh)
            hgates = layers.elementwise_add(hgates, self._bias_hh)

            chunked_igates = layers.split(igates, num_or_sections=3, dim=1)
            chunked_hgates = layers.split(hgates, num_or_sections=3, dim=1)

            reset_gate = layers.elementwise_add(chunked_igates[0],
                                                chunked_hgates[0])
            reset_gate = self._gate_activation(reset_gate)

            input_gate = layers.elementwise_add(chunked_igates[1],
                                                chunked_hgates[1])
            input_gate = self._gate_activation(input_gate)

            _temp = reset_gate * chunked_hgates[2]
            new_gate = layers.elementwise_add(chunked_igates[2], _temp)
            new_gate = self._activation(new_gate)

            new_hidden = (pre_hidden - new_gate) * input_gate + new_gate

        else:

            concat_input_hidden = layers.concat([input, pre_hidden], 1)

            gate_input = layers.matmul(
                x=concat_input_hidden, y=self._gate_weight)

            gate_input = layers.elementwise_add(gate_input, self._gate_bias)
            gate_input = self._gate_activation(gate_input)
            r, u = layers.split(gate_input, num_or_sections=2, dim=1)

            r_hidden = r * pre_hidden

            candidate = layers.matmul(
                layers.concat([input, r_hidden], 1), self._candidate_weight)
            candidate = layers.elementwise_add(candidate, self._candidate_bias)

            c = self._activation(candidate)
            new_hidden = u * pre_hidden + (1 - u) * c

        return new_hidden