elementwise_mul_op.h 4.9 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16
#include "paddle/operators/elementwise_op_function.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25
template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
27
class ElementwiseMulKernel : public framework::OpKernel<T> {
28 29
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
30 31 32 33 34 35 36 37
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis, z);
G
gongweibao 已提交
38 39
  }
};
40

G
gongweibao 已提交
41 42 43 44 45
template <typename T>
struct ElementwiseMulGradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
46 47
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
G
gongweibao 已提交
48
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
49

G
gongweibao 已提交
50 51 52
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e * y_e;
53 54
    }

G
gongweibao 已提交
55 56 57
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = x_e * dz_e;
58 59 60 61
    }
  }
};

G
gongweibao 已提交
62 63 64 65 66
template <typename T>
struct ElementwiseMulBroadCastGradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
67 68
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
G
gongweibao 已提交
69
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
70

G
gongweibao 已提交
71 72 73
    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
74 75

    if (dx) {
G
gongweibao 已提交
76 77
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e * y_e_bcast;
78
    }
G
gongweibao 已提交
79

80
    if (dy) {
G
gongweibao 已提交
81 82 83 84
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = (x_e * dz_e)
                           .reshape(Eigen::DSizes<int, 2>(pre, n))
                           .sum(Eigen::array<int, 1>{{0}});
85
    }
G
gongweibao 已提交
86 87
  }
};
88

G
gongweibao 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
template <typename T>
struct ElementwiseMulBroadCast2GradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N, typename Post>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
                  Post post) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e * y_e_bcast;
105 106
    }

G
gongweibao 已提交
107 108 109 110 111
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = (x_e * dz_e)
                           .reshape(Eigen::DSizes<int, 3>(pre, n, post))
                           .sum(Eigen::array<int, 2>{{0, 2}});
112 113 114 115
    }
  }
};

Q
QI JUN 已提交
116
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
117
class ElementwiseMulGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
118 119
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
120 121 122 123 124 125 126 127 128
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
Q
QI JUN 已提交
129
    ElementwiseGradCompute<DeviceContext, T, ElementwiseMulGradFunctor<T>,
G
gongweibao 已提交
130
                           ElementwiseMulBroadCastGradFunctor<T>,
C
chengduoZH 已提交
131 132
                           ElementwiseMulBroadCast2GradFunctor<T>>(
        ctx, x, y, out, dout, axis, dx, dy);
G
gongweibao 已提交
133 134 135
  }
};

136 137
}  // namespace operators
}  // namespace paddle