test_decoupled_py_reader.py 5.8 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import numpy as np
import time
import six
import unittest

EPOCH_NUM = 60
BATCH_SIZE = 32
CLASS_NUM = 10


def random_reader():
    for i in range(BATCH_SIZE * 40):
        image = np.random.random([784])
        label = np.random.random_integers(low=0, high=CLASS_NUM - 1)
        yield image, label


def simple_fc_net(places, use_legacy_py_reader):
    startup_prog = fluid.Program()
    main_prog = fluid.Program()
    startup_prog.random_seed = 1
    main_prog.random_seed = 1
    reader = paddle.batch(random_reader, batch_size=BATCH_SIZE)

    with fluid.unique_name.guard():
        with fluid.program_guard(main_prog, startup_prog):
            if not use_legacy_py_reader:
                image = fluid.layers.data(
                    name='image', shape=[784], dtype='float32')
                label = fluid.layers.data(
                    name='label', shape=[1], dtype='int64')
                py_reader = fluid.io.PyReader(
                    feed_list=[image, label],
                    places=places,
                    capacity=4,
                    multi_queue=False)
                py_reader.set_numpy_reader(reader)
            else:
                py_reader = fluid.layers.py_reader(
                    capacity=4,
                    shapes=[(-1, 784), (-1, 1)],
                    dtypes=['float32', 'int64'])
                image, label = fluid.layers.read_file(py_reader)
                py_reader.decorate_paddle_reader(reader)

            hidden = image
            for hidden_size in [10, 20, 30]:
                hidden = fluid.layers.fc(
                    hidden,
                    size=hidden_size,
                    act='tanh',
                    bias_attr=fluid.ParamAttr(
                        initializer=fluid.initializer.Constant(value=1.0)))

            predict_label = fluid.layers.fc(hidden,
                                            size=CLASS_NUM,
                                            act='softmax')
            loss = fluid.layers.mean(
                fluid.layers.cross_entropy(
                    input=predict_label, label=label))

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)
    return startup_prog, main_prog, py_reader, loss


class TestBase(unittest.TestCase):
    def run_main(self, use_legacy_py_reader, with_data_parallel, places):
        with fluid.scope_guard(fluid.Scope()):
            startup_prog, main_prog, py_reader, loss = simple_fc_net(
                places, use_legacy_py_reader)
            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

            prog = fluid.CompiledProgram(main_prog)
            if with_data_parallel:
                prog = prog.with_data_parallel(
                    loss_name=loss.name, places=places)

            step = 0
            start_t = time.time()
            if use_legacy_py_reader:
                for _ in six.moves.range(EPOCH_NUM):
                    py_reader.start()
                    while True:
                        try:
                            L, = exe.run(program=prog, fetch_list=[loss])
                            step += 1
                        except fluid.core.EOFException:
                            py_reader.reset()
                            break
            else:
                for _ in six.moves.range(EPOCH_NUM):
                    for d in py_reader():
                        '''
                        assert len(d) == len(places)
                        for i, item in enumerate(d):
                            image = item['image']
                            label = item['label']
                            assert image.shape() == [BATCH_SIZE, 784]
                            assert label.shape() == [BATCH_SIZE, 1]
                            assert image._place()._equals(places[i])
                            assert label._place()._equals(places[i])
                        '''
                        L, = exe.run(program=prog, feed=d, fetch_list=[loss])
                        step += 1
            end_t = time.time()
            return {"time": end_t - start_t, "step": step}

    def prepare_places(self, with_data_parallel):
        places = [[fluid.CPUPlace()], ]
        if with_data_parallel:
            places.append([fluid.CPUPlace()] * 2)

        if fluid.core.is_compiled_with_cuda():
            tmp = fluid.cuda_places()
            assert len(tmp) > 0, "no gpu detected"
            if with_data_parallel:
                places.append(tmp)
            places.append([tmp[0]])
        return places

    def test_main(self):
        for with_data_parallel in [True, False]:
            for p in self.prepare_places(with_data_parallel):
                t = []
                for use_legacy_py_reader in [False, True]:
                    ret = self.run_main(
                        use_legacy_py_reader=use_legacy_py_reader,
                        with_data_parallel=with_data_parallel,
                        places=p)
                    ret['legacy'] = use_legacy_py_reader
                    ret['data_parallel'] = with_data_parallel
                    ret['places'] = p
                    t.append(ret)

                print(t)


if __name__ == '__main__':
    unittest.main()