framework.py 91.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
70
]
Y
Yu Yang 已提交
71

Q
qiaolongfei 已提交
72 73 74 75
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
76 77
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

78
_imperative_tracer_ = None
M
minqiyang 已提交
79
_imperative_current_expected_place_ = None
80 81 82 83 84 85 86 87 88


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
89

M
minqiyang 已提交
90
def _current_expected_place():
M
minqiyang 已提交
91
    return _imperative_current_expected_place_
M
minqiyang 已提交
92 93


S
sneaxiy 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
152
@signature_safe_contextmanager
153 154 155 156 157 158 159 160 161 162 163 164
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
165

166 167 168 169
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
170 171
          with name_scope("attention"):
             ...
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
191 192 193
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
194 195 196 197


def grad_var_name(var_name):
    """
198 199
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
200 201 202
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
203

204
def convert_np_dtype_to_dtype_(np_dtype):
205 206
    """
    Convert the data type in numpy to the data type in Paddle
207

208
    Args:
209
        np_dtype(np.dtype): the data type in numpy.
210

211 212
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
213 214

    """
215 216
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
217
        return core.VarDesc.VarType.FP32
218
    elif dtype == np.float64:
219
        return core.VarDesc.VarType.FP64
220
    elif dtype == np.float16:
221
        return core.VarDesc.VarType.FP16
222
    elif dtype == np.int32:
223
        return core.VarDesc.VarType.INT32
224
    elif dtype == np.int16:
225
        return core.VarDesc.VarType.INT16
226
    elif dtype == np.int64:
227
        return core.VarDesc.VarType.INT64
228
    elif dtype == np.bool:
229
        return core.VarDesc.VarType.BOOL
230 231
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
232 233
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
234 235
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
236
    else:
M
minqiyang 已提交
237
        raise ValueError("Not supported numpy dtype %s" % dtype)
238 239 240


def dtype_is_floating(dtype):
241 242 243
    """
    Check the data type is floating or not.
    Args:
244
        dtype(np.dtype|core.VarDesc.VarType): data type.
245 246 247 248 249
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
250
    if not isinstance(dtype, core.VarDesc.VarType):
251 252
        dtype = convert_np_dtype_to_dtype_(dtype)

253 254 255 256
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
257 258


Y
Yang Yang(Tony) 已提交
259
def _debug_string_(proto, throw_on_error=True):
260 261 262 263 264 265 266 267 268 269 270
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
271
    error_fields = list()
Y
Yang Yang(Tony) 已提交
272
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
273 274
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
275 276 277
    return proto.__str__()


X
Xin Pan 已提交
278
class Variable(object):
279
    """
280 281 282
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
283
    two variables in different blocks could have the same name.
284

285 286
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
287

288
    Most of a Variable's member variables can be setted to be None. It mean
289
    it is not available or will be specified later.
290 291

    Args:
292
        block(Block): The block that the variable belongs to.
293 294
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
295 296
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
297
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
298
            Some kinds of variable do not contain shape, just set it to None.
299 300 301
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
302
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
303
            series data.
304
            Default: None
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
327 328
    """

Y
Yu Yang 已提交
329 330
    def __init__(self,
                 block,
Y
Yu Yang 已提交
331
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
332 333 334 335
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
336
                 capacity=None,
Q
QI JUN 已提交
337
                 persistable=None,
F
fengjiayi 已提交
338
                 error_clip=None,
Y
Yu Yang 已提交
339
                 stop_gradient=False,
F
fengjiayi 已提交
340
                 is_data=False,
Y
Yu Yang 已提交
341
                 **kwargs):
Y
Yu Yang 已提交
342
        self.block = block
F
fengjiayi 已提交
343
        self.error_clip = error_clip
Y
Yu Yang 已提交
344 345

        if name is None:
Y
Yu Yang 已提交
346
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
347
        is_new_var = False
M
minqiyang 已提交
348
        name = cpt.to_text(name)
M
minqiyang 已提交
349
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
350 351

        if self.desc is None:
M
minqiyang 已提交
352
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
353
            is_new_var = True
Y
Yu Yang 已提交
354

Y
Yu Yang 已提交
355 356 357 358 359 360 361 362
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
363
        if shape is not None:
Y
Yu Yang 已提交
364
            if is_new_var:
365
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
366 367 368 369 370 371 372 373
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
374
        if dtype is not None:
375
            if not isinstance(dtype, core.VarDesc.VarType):
376
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
377
            if is_new_var:
F
fengjiayi 已提交
378
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
379
            else:
F
fengjiayi 已提交
380
                old_dtype = self.dtype
Q
QI JUN 已提交
381
                if dtype != old_dtype:
Y
Yu Yang 已提交
382 383 384 385 386
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
387 388

        if lod_level is not None:
Y
Yu Yang 已提交
389
            if is_new_var:
390
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
391 392 393 394 395 396 397
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
398 399 400 401 402 403 404 405 406 407 408
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

409 410 411 412 413 414 415 416
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
417
        self.block.vars[name] = self
Y
Yu Yang 已提交
418
        self.op = None
M
minqiyang 已提交
419
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
420
        self.is_data = is_data
X
Xin Pan 已提交
421
        if _in_imperative_mode():
M
minqiyang 已提交
422 423 424
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
425
            self._ivar.desc = self.desc
426
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
427

428
    def _numpy(self):
M
minqiyang 已提交
429
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
430
        return np.array(new_ivar.value().get_tensor())
431 432

    def _backward(self):
X
Xin Pan 已提交
433
        self._ivar._run_backward()
434 435

    def _gradient(self):
M
minqiyang 已提交
436
        return np.array(self._ivar._grad_value())
437

X
Xin Pan 已提交
438 439
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
440

441
    def __str__(self):
Y
Yang Yang(Tony) 已提交
442 443
        return self.to_string(True)

F
update  
fengjiayi 已提交
444
    def to_string(self, throw_on_error, with_details=False):
445 446 447 448
        """
        Get debug string.

        Args:
449 450
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
451
            with_details(bool): more details about variables and parameters
452 453
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
454

455 456
        Returns:
            str: The debug string.
457
        """
F
update  
fengjiayi 已提交
458 459
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
460
        protostr = self.desc.serialize_to_string()
461
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
462 463 464 465
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
466 467
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
468
        return res_str
469 470 471

    __repr__ = __str__

W
Wu Yi 已提交
472
    def _set_desc(self, input):
473 474 475 476 477 478 479 480 481
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
482 483
        self.desc = input

484 485
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
486 487 488 489
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
490 491 492

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
493 494 495
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
496

497 498 499 500
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
501 502 503 504
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
505 506
    @property
    def name(self):
M
minqiyang 已提交
507
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
508

T
typhoonzero 已提交
509 510 511 512
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
513 514 515
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
516
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
517 518

    @property
F
fengjiayi 已提交
519 520
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
521 522 523

    @property
    def lod_level(self):
524
        return self.desc.lod_level()
Y
Yu Yang 已提交
525

Y
Yu Yang 已提交
526 527 528 529
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
530
    def _set_error_clip(self, error_clip):
531 532 533 534 535 536 537 538 539
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
540 541
        self.error_clip = error_clip

Y
Yu Yang 已提交
542

F
fengjiayi 已提交
543 544 545
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
546

547 548
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
549 550 551 552
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
553
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
554 555 556 557 558
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
559 560 561 562
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
563 564 565 566 567 568 569 570 571
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
572
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
573 574 575 576 577 578
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
579 580 581 582 583 584 585 586
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
587 588
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
589 590
        return self.op_proto_map[type]

591 592 593 594
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
595
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
596
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
597 598
        }

F
fengjiayi 已提交
599

X
Xin Pan 已提交
600
class Operator(object):
601
    """
602 603 604 605 606 607 608
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
609
        type(str): The type of operator. Default None.
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
630
        Block.append_op or Block._prepend_op instead.
631 632 633 634 635 636 637 638 639 640

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
641
    """
642 643 644
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
645 646
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
647
    }
648

Y
Yu Yang 已提交
649 650
    def __init__(self,
                 block,
Y
Yu Yang 已提交
651
                 desc,
Y
Yu Yang 已提交
652 653 654
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
655
                 attrs=None):
Y
Yu Yang 已提交
656
        self.block = block
Y
Yu Yang 已提交
657
        self.desc = desc
G
gongweibao 已提交
658 659 660 661 662
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
663 664 665 666
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
667 668
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
669 670 671

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
672 673
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
674

G
gongweibao 已提交
675 676
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
677

F
fengjiayi 已提交
678 679 680 681 682
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
683 684 685 686 687
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
688
        self.desc.set_type(type)
F
fengjiayi 已提交
689
        proto = OpProtoHolder.instance().get_op_proto(type)
690

691 692 693
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
694 695
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
696
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
697 698
                    return True
            return False
Q
QI JUN 已提交
699

Y
Yang Yang(Tony) 已提交
700 701 702 703 704 705 706
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
707 708 709 710
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
711 712
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
713 714 715
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
716
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
717
                            in_arg_names.append(arg)
718 719
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
720
                        else:
M
minqiyang 已提交
721
                            in_arg_names.append(cpt.to_text(arg.name))
722
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
723 724
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
725

Y
Yu Yang 已提交
726
        if outputs is not None:
727
            for m in proto.outputs:
Q
qingqing01 已提交
728 729 730 731 732 733
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
734
            for out_proto in proto.outputs:
Q
qingqing01 已提交
735 736
                if out_proto.name not in outputs:
                    continue
737 738 739 740
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
741 742
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
743 744 745
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
746
                    out_arg_names.append(cpt.to_text(arg.name))
747 748
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
749

G
gongweibao 已提交
750 751
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
752
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
753
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
754
                attr_name = attr.name
G
gongweibao 已提交
755
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
756
                    continue
G
gongweibao 已提交
757
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
758 759
                self._update_desc_attr(attr_name, attr_val)

760
        self.desc.check_attrs()
M
minqiyang 已提交
761

W
Wu Yi 已提交
762
        if self._has_kernel(type):
Q
QI JUN 已提交
763
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
764
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
765

X
Xin Pan 已提交
766 767 768
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
769
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
770
            if inputs is not None:
X
Xin Pan 已提交
771 772 773 774 775 776
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
777
            if outputs is not None:
X
Xin Pan 已提交
778 779 780 781 782
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
783

W
Wu Yi 已提交
784
    def _has_kernel(self, op_type):
785 786
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
787
    def to_string(self, throw_on_error):
788
        """
789 790
        Get debug string.

791
        Args:
792 793
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
794

795 796
        Returns:
            str: The debug string.
797 798

        """
799
        protostr = self.desc.serialize_to_string()
800
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
801 802 803 804
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
805 806 807

    __repr__ = __str__

F
fengjiayi 已提交
808 809 810 811 812
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
813
        """
814
        Get the input arguments according to the input parameter name.
815

816 817
        Args:
            name(str): The input parameter name.
818

819 820 821
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
822
        """
F
fengjiayi 已提交
823 824
        return self.desc.input(name)

W
Wu Yi 已提交
825
    def _rename_input(self, old_name, new_name):
826 827 828 829 830 831 832 833 834 835
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
836
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
837

W
Wu Yi 已提交
838
    def _rename_output(self, old_name, new_name):
839 840 841 842 843 844 845 846 847 848
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
849
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
850

F
fengjiayi 已提交
851 852 853 854
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
855 856 857 858 859 860 861 862
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
863
    def output(self, name):
864
        """
865
        Get output arguments by the output parameter name.
866

867 868
        Args:
            name(str): The output parameter name.
869

870 871 872
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
873
        """
F
fengjiayi 已提交
874 875 876 877 878 879
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

880 881 882 883 884 885 886 887
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
888
    def has_attr(self, name):
889
        """
890 891
        Whether this Operator has the attribute with name or not.

892
        Args:
893
            name(str): the attribute name.
894

895 896
        Returns:
            bool: True if has this attribute.
897 898

        """
F
fengjiayi 已提交
899 900 901
        return self.desc.has_attr(name)

    def attr_type(self, name):
902
        """
903
        Get the type of attribute by attribute's name.
904

905 906
        Args:
            name(str): the attribute name.
907

908 909
        Returns:
            core.AttrType: the attribute type.
910
        """
F
fengjiayi 已提交
911 912
        return self.desc.attr_type(name)

W
Wu Yi 已提交
913
    def _set_attr(self, name, val):
914 915 916 917 918 919 920 921 922 923
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
937 938
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
939 940
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
941
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
942 943 944 945
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
946
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
947

F
fengjiayi 已提交
948 949 950 951 952
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
953
        """
954 955
        Get the attribute by name.

956
        Args:
957
            name(str): the attribute name.
958

959 960
        Returns:
            bool|int|str|float|list: The attribute value. The return value
961 962
            can be any valid attribute type.
        """
F
fengjiayi 已提交
963
        return self.desc.attr(name)
Y
Yu Yang 已提交
964

W
Wu Yi 已提交
965
    def _block_attr_id(self, name):
966
        """
G
gongweibao 已提交
967
        Get the block attribute's id by name.
968

969 970
        Args:
            name(str): the attribute name.
971

972 973
        Returns:
            int: the block index.
974
        """
W
Wu Yi 已提交
975
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
976

W
Wu Yi 已提交
977
    def _block_attr(self, name):
G
gongweibao 已提交
978 979 980 981 982 983 984 985 986 987
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
988
        id = self._block_attr_id(name)
G
gongweibao 已提交
989 990 991
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
992
    def _blocks_attr(self, name):
G
gongweibao 已提交
993 994 995 996 997 998 999 1000 1001 1002
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1003
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1004 1005 1006 1007 1008
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1009
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1020
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1021

J
JiayiFeng 已提交
1022
    def all_attrs(self):
F
fengjiayi 已提交
1023
        """
1024 1025 1026
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1027
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1028 1029 1030 1031
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1032 1033
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1034
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1035 1036 1037
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1038
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1039 1040 1041 1042
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1043 1044
        return attr_map

Y
Yu Yang 已提交
1045

Y
Yu Yang 已提交
1046
class Block(object):
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1061
        use `Program._create_block()` to create a block.
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1076
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1077
        self.desc = program.desc.block(idx)
1078
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1079
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1080
        self.program = program
1081
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1082

1083
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1084 1085
        return self.to_string(True)

F
fengjiayi 已提交
1086 1087
    def to_string(self, throw_on_error, with_details=False):
        """
1088 1089
        Get debug string.

F
fengjiayi 已提交
1090 1091
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1092
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1093
            with_details(bool): more details about variables and parameters
1094 1095
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1096

1097 1098
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1099 1100 1101 1102
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1103
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1104 1105
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1106
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1107
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1108
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1109
            for op in self.ops:
F
fengjiayi 已提交
1110 1111
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1112 1113 1114
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1115 1116
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1117 1118
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1119 1120 1121

    __repr__ = __str__

Y
Yu Yang 已提交
1122 1123
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1124
        return self.desc.parent
Y
Yu Yang 已提交
1125

Y
Yu Yang 已提交
1126 1127 1128 1129
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1130
    def _set_forward_block_idx(self, idx):
1131 1132 1133 1134 1135 1136 1137 1138 1139
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1140
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1141

Y
Yu Yang 已提交
1142 1143
    @property
    def idx(self):
Y
Yu Yang 已提交
1144
        return self.desc.id
Y
Yu Yang 已提交
1145

Q
Qiao Longfei 已提交
1146
    def var(self, name):
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1160
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1161 1162 1163
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1164 1165
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1166
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1167
        return v
Q
Qiao Longfei 已提交
1168

X
Xin Pan 已提交
1169
    def _find_var_recursive(self, name):
1170 1171 1172 1173 1174 1175 1176
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1177
            Variable: the Variable with the giving name. Or None if not found.
1178
        """
Y
Yu Yang 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1203
        return None
Y
Yu Yang 已提交
1204

X
Xin Pan 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1224

Q
Qiao Longfei 已提交
1225
    def all_parameters(self):
1226
        return list(self.iter_parameters())
1227

1228
    def iter_parameters(self):
M
minqiyang 已提交
1229
        return (item[1] for item in six.iteritems(self.vars)
1230
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1231

Y
Yu Yang 已提交
1232
    def create_var(self, *args, **kwargs):
1233
        var = Variable(block=self, *args, **kwargs)
1234 1235
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1236
        return var
Y
Yu Yang 已提交
1237

Q
Qiao Longfei 已提交
1238 1239 1240
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1241
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1242 1243
        """
        Rename variable in vars and ops' inputs and outputs
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1256
        """
M
minqiyang 已提交
1257 1258
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1259

T
typhoonzero 已提交
1260
        if not self.has_var(name):
1261
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1262 1263
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1264
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1265 1266 1267 1268 1269 1270 1271
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1272
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1273 1274 1275 1276
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1277
        orig_var_type = v.type
M
minqiyang 已提交
1278
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1279
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1280
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1281
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1282 1283 1284 1285
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1286
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1287 1288 1289 1290 1291 1292 1293
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1294
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1295 1296
            var = Variable(
                self,
T
typhoonzero 已提交
1297
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1298 1299 1300 1301
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1302
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1303 1304 1305
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1306
        self._sync_with_cpp()
1307
        return var
T
typhoonzero 已提交
1308

W
Wu Yi 已提交
1309 1310
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1311
        self.desc._remove_var(cpt.to_bytes(name))
1312 1313
        del self.vars[name]

Y
Yu Yang 已提交
1314 1315
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1316
        param = Parameter(global_block, *args, **kwargs)
1317
        if 'initializer' in kwargs:
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1338
        return param
Y
Yu Yang 已提交
1339

Y
Yu Yang 已提交
1340
    def append_op(self, *args, **kwargs):
1341 1342 1343 1344 1345 1346
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1347
        op_desc = self.desc.append_op()
1348 1349 1350 1351 1352 1353 1354 1355
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1356

M
minqiyang 已提交
1357 1358
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1359 1360 1361 1362
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1363
        if _in_imperative_mode():
1364
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1365
                                       _imperative_current_expected_place_,
1366
                                       stop_gradient)
Y
Yu Yang 已提交
1367

W
Wu Yi 已提交
1368
    def _insert_op(self, index, *args, **kwargs):
1369 1370 1371 1372 1373 1374 1375 1376 1377
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1378 1379
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1380 1381 1382 1383
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1384
    def _remove_op(self, index):
1385 1386 1387 1388 1389 1390 1391 1392 1393
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1394 1395
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1396 1397
        del self.ops[index]

W
Wu Yi 已提交
1398
    def _slice_ops(self, start, end):
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1409
        return self.ops[start:end]
Y
Yancey1989 已提交
1410

W
Wu Yi 已提交
1411 1412
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1413 1414 1415 1416 1417 1418 1419
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1420
        self.ops.insert(0, op)
1421
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1422 1423
        return op

W
Wu Yi 已提交
1424
    def _sync_with_cpp(self):
1425
        """
1426 1427
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1428
        """
Q
Qiao Longfei 已提交
1429 1430 1431 1432 1433
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1434
        # sync variables removed from c++ end
1435
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1436
            if not self.desc.find_var(cpt.to_bytes(var)):
1437 1438
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1439
        # sync operators from cpp
1440 1441 1442 1443
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1460 1461 1462 1463 1464

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1465
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1466 1467 1468 1469 1470 1471 1472

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1486 1487 1488 1489
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1490
    def _copy_param_info_from(self, other):
1491
        """
1492 1493
        Copy the information of parameters from the other block.

1494
        Args:
1495 1496 1497 1498 1499
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1500 1501 1502 1503 1504

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1505 1506
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1507
        for p in other.iter_parameters():
1508 1509 1510
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1511
                raise ValueError("_copy_param_info_from should be invoked with "
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1524
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1525
                error_clip=p.error_clip,
1526 1527 1528
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1529
    def _clone_variable(self, var):
1530 1531
        """
        Clone a variable into current block.
1532

1533 1534 1535 1536
        Args:
            var: the variable to be cloned.

        Returns:
1537
            Variable: the new  variable cloned from 'var' in current block.
1538 1539
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1540 1541 1542 1543 1544
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1545 1546
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1547
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1548 1549 1550 1551 1552 1553
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1554 1555
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1556 1557 1558 1559 1560 1561 1562
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1563 1564
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1565
        return ret_var
1566

Y
Yu Yang 已提交
1567

1568 1569
class IrGraph(object):
    """
1570 1571 1572 1573
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1574 1575 1576 1577
    """

    def __init__(self, graph, for_test=False):
        """
1578 1579
        Construct an IrGraph using core.Graph.

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1590 1591 1592
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1593 1594
        return self._for_test

W
WangZhen 已提交
1595
    def all_nodes(self):
1596 1597 1598
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1599
        return {node for node in self.graph.nodes()}
1600 1601

    def all_vars(self):
1602 1603 1604
        """
        Return all variable nodes included in the graph as a set.
        """
1605 1606
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1607
    def all_persistable_vars(self):
1608 1609 1610
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1611 1612 1613 1614 1615 1616 1617
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1618
    def all_ops(self):
1619 1620 1621
        """
        Return all operator nodes included in the graph as a set.
        """
1622 1623
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1624 1625
    def var_node(self, name):
        """
1626 1627
        Get a variable node by name from the graph.

W
WangZhen 已提交
1628 1629
        Args:
            name(str): the name of the variable node.
1630

W
WangZhen 已提交
1631 1632 1633
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1634

W
WangZhen 已提交
1635
        Returns:
1636
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1651
    def create_param_node(self, name, var_type, shape, var_dtype):
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1665 1666 1667 1668 1669 1670 1671 1672
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1687 1688 1689 1690 1691 1692 1693
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1704 1705 1706
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1719 1720
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
1721
        for attr, value in six.iteritems(attrs):
1722
            self._update_desc_attr(op_desc, attr, value)
1723
        for input_name, var_nodes in six.iteritems(inputs):
1724 1725 1726 1727
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
1728
        for output_name, var_nodes in six.iteritems(outputs):
1729 1730 1731 1732 1733 1734 1735
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1736 1737 1738 1739 1740 1741 1742 1743 1744
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1745 1746 1747
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1748 1749 1750 1751 1752 1753 1754 1755
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1756 1757 1758
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1759 1760 1761 1762 1763 1764 1765
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1766 1767 1768 1769 1770 1771 1772
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1773
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1774
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1775 1776 1777 1778
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1779 1780 1781 1782 1783 1784 1785
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1786
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1787 1788 1789 1790
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1791 1792
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1793
    def has_circle(self):
1794 1795 1796 1797 1798 1799
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1800 1801 1802
        return core.has_circle(self.graph)

    def graph_num(self):
1803 1804 1805 1806 1807 1808
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1809 1810 1811
        return core.graph_num(self.graph)

    def topology_sort(self):
1812 1813 1814 1815 1816 1817 1818 1819
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1820 1821 1822
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1823 1824 1825 1826 1827 1828
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1829 1830
        return core.build_adjacency_list(self.graph)

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1845 1846 1847 1848 1849 1850 1851 1852 1853
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1854 1855 1856 1857 1858 1859
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1860 1861
        ops_num = 0
        for node in self.graph.nodes():
1862
            if node.is_op():
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1889
        convert_pass = core.get_pass('graph_to_program_pass')
1890 1891
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1912
class Program(object):
D
dzhwinter 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1924
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1925 1926

    Returns:
Y
yuyang18 已提交
1927
        A empty program.
D
dzhwinter 已提交
1928 1929

    Examples:
Y
yuyang18 已提交
1930 1931 1932 1933 1934 1935
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1936 1937 1938

    """

1939 1940
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1941 1942
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1943
        self._seed = 0
Y
yuyang18 已提交
1944
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1945
        self._op_role_var = []
T
tangwei12 已提交
1946

1947 1948
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1949
        self._is_distributed = False
1950
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1951
        self._is_chief = False
1952 1953 1954
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1955
        self._endpoints = []
1956 1957 1958
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1959
        self._trainers_endpoints = []
1960
        # the distributed lookup table names
T
tangwei12 已提交
1961
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1962
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1963
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1964
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1965 1966

    @property
D
dzhwinter 已提交
1967
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1968 1969
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1970
        return self.__is_mem_optimized
D
dzhwinter 已提交
1971

D
dzhwinter 已提交
1972 1973 1974
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1975 1976 1977

    @property
    def op_role(self):
Y
yuyang18 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1991 1992 1993
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1994
    def op_role(self, role):
Y
yuyang18 已提交
1995 1996 1997 1998
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1999 2000 2001 2002 2003 2004 2005
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2006 2007 2008 2009
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2010
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2011

S
rename  
sneaxiy 已提交
2012
    @signature_safe_contextmanager
W
Wu Yi 已提交
2013
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2014 2015 2016 2017 2018 2019 2020
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2021
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2022 2023 2024 2025

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2026
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2027 2028
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2029 2030 2031
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2032 2033
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2034 2035 2036 2037
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2038
        yield
X
Xin Pan 已提交
2039 2040
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2041

S
rename  
sneaxiy 已提交
2042
    @signature_safe_contextmanager
X
Xin Pan 已提交
2043
    def _lr_schedule_guard(self, is_with_opt=False):
2044 2045 2046 2047 2048 2049 2050
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2051 2052 2053 2054
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2055 2056 2057 2058 2059 2060 2061

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2062 2063 2064 2065

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2066 2067
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2068 2069
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2070 2071 2072
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2073 2074
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2075

2076
    def __str__(self):
Y
yuyang18 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2086 2087
        return self.to_string(True)

F
fengjiayi 已提交
2088 2089 2090
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2091

F
fengjiayi 已提交
2092
        Args:
Y
yuyang18 已提交
2093 2094
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2095

Y
yuyang18 已提交
2096 2097 2098 2099
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2100 2101
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2102 2103 2104 2105

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2116 2117
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2118 2119
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2120

W
Wu Yi 已提交
2121
    def _get_desc(self):
Y
yuyang18 已提交
2122 2123 2124 2125 2126 2127 2128
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2129 2130
        return self.desc

X
version  
Xin Pan 已提交
2131 2132 2133
    def _version(self):
        return self.desc._version()

2134
    def clone(self, for_test=False):
Y
yuyang18 已提交
2135 2136 2137
        """
        Create a new, duplicated program.

2138

Y
yuyang18 已提交
2139 2140 2141 2142
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2143

Y
yuyang18 已提交
2144 2145 2146 2147
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2148 2149 2150 2151 2152
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2153 2154

        Args:
Y
yuyang18 已提交
2155 2156
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2157

D
dzhwinter 已提交
2158
        Returns:
Y
yuyang18 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2212 2213
        """
        if for_test:
X
Xin Pan 已提交
2214
            p = self._inference_optimize(prune_read_op=False)
2215
        else:
2216
            p = Program()
G
gongweibao 已提交
2217 2218
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2219
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2220 2221 2222
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2223 2224 2225 2226

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2227
            p._sync_with_cpp()
2228

W
Wu Yi 已提交
2229
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2230
        p._copy_data_info_from(self)
2231
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2232
        return p
2233

W
Wu Yi 已提交
2234
    def _prune(self, targets):
Y
yuyang18 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2250 2251 2252 2253 2254 2255
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2256 2257
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2258
                    # and we need to find the current op that generate this
2259 2260 2261 2262 2263 2264 2265 2266
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2267
                    t = t.op
2268 2269 2270 2271
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2272
                else:
2273 2274
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2275 2276 2277 2278

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2279 2280 2281
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2282
        res._sync_with_cpp()
2283 2284
        return res

X
Xin Pan 已提交
2285
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2286
        """
F
fengjiayi 已提交
2287 2288 2289 2290 2291
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2292
        3. change the :code:`is_test`
Y
yuyang18 已提交
2293 2294 2295
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2296
        Args:
X
Xin Pan 已提交
2297 2298
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2299

Y
yuyang18 已提交
2300 2301 2302 2303 2304 2305
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2306
        res = Program()
2307
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2308 2309 2310 2311

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2312
        if prune_read_op:
2313 2314 2315 2316 2317 2318 2319 2320 2321
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2322
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2323 2324

        # change all `is_test` attributes to True
M
minqiyang 已提交
2325
        for i in six.moves.range(res.desc.num_blocks()):
2326
            block = res.desc.block(i)
M
minqiyang 已提交
2327
            for j in six.moves.range(block.op_size()):
2328 2329
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2330
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2331 2332 2333
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2334
        res._sync_with_cpp()
2335 2336
        return res

2337 2338
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2339 2340 2341 2342 2343 2344 2345
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2346
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2347 2348 2349 2350

        Returns:
            Program: A deserialized program desc.
        """
2351 2352
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2353
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2354
        p._sync_with_cpp()
2355
        return p
Y
Yu Yang 已提交
2356

2357
    @staticmethod
2358
    def _construct_from_desc(desc):
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2374 2375
    @property
    def random_seed(self):
Y
yuyang18 已提交
2376 2377 2378 2379 2380 2381
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2382 2383
        return self._seed

Q
qiaolongfei 已提交
2384 2385
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2386 2387 2388
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2389 2390
        return self.desc.num_blocks()

D
dzhwinter 已提交
2391 2392 2393 2394 2395 2396
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2397
    def __repr__(self):
2398
        return self.__str__()
2399

Y
Yu Yang 已提交
2400
    def global_block(self):
Y
yuyang18 已提交
2401 2402 2403
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2404 2405
        return self.blocks[0]

Q
Qiao Longfei 已提交
2406
    def block(self, index):
Y
yuyang18 已提交
2407 2408 2409 2410 2411 2412 2413 2414
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2415 2416
        return self.blocks[index]

Y
Yu Yang 已提交
2417
    def current_block(self):
Y
yuyang18 已提交
2418 2419 2420 2421
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2422 2423
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2424
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2435
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2436 2437 2438
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2439 2440 2441 2442
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2443
    def _rollback(self):
Y
yuyang18 已提交
2444 2445 2446 2447 2448
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2449 2450
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2451
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2462 2463 2464
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2465
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2466

W
Wu Yi 已提交
2467
    def _copy_param_info_from(self, other):
2468
        """
2469
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2470

Y
yuyang18 已提交
2471 2472 2473
        Notes: This is a very low level API. Users should not invoke it
        directly.

2474 2475 2476 2477 2478 2479 2480
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2481
            raise TypeError("_copy_param_info_from should be invoked with "
2482 2483 2484
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2485
            raise ValueError("_copy_param_info_from should be invoked with two "
2486
                             "program, with represent the same topology")
W
Wu Yi 已提交
2487
        self.global_block()._copy_param_info_from(other.global_block())
2488

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2504
        self._parameters_on_pservers = other._parameters_on_pservers
2505
        self._endpoints = other._endpoints
2506
        self._ps_endpoint = other._ps_endpoint
2507 2508
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2509
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2510 2511
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2512

Y
yuyang18 已提交
2513 2514 2515
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2516 2517 2518 2519 2520 2521 2522
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2523
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2524 2525 2526
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2527
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2528
                             "program, with represent the same topology")
2529
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2530 2531 2532
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2533
    def list_vars(self):
Y
yuyang18 已提交
2534 2535 2536 2537 2538 2539
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2540
        for each_block in self.blocks:
2541
            for each_var in list(each_block.vars.values()):
2542 2543
                yield each_var

Y
Yu Yang 已提交
2544

Y
Yu Yang 已提交
2545
class Parameter(Variable):
2546
    """
2547
    Parameter is derived from Variable. A parameter is a persistable
2548
    Variable, and will be updated by optimizers after each iteration.
2549
    The training of a neural network is essentially the updating of
2550 2551
    its parameters.

2552
    Relative to a general Variable, a Parameter has several its own
2553 2554
    member variables:

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2567 2568
    """

Y
Yu Yang 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2579 2580 2581

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2582 2583 2584 2585
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2586 2587
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2588
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2589

W
wanghaoshuang 已提交
2590
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2591

F
fengjiayi 已提交
2592 2593 2594
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2595 2596 2597
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2598

F
update  
fengjiayi 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2613
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2614
            for attr_name in additional_attr:
2615 2616
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2617 2618
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2619 2620 2621 2622
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2623

Y
Yu Yang 已提交
2624
# program is a global instance.
Y
Yu Yang 已提交
2625 2626
_main_program_ = Program()
_startup_program_ = Program()
2627

2628

2629
def default_startup_program():
Y
Yu Yang 已提交
2630
    """
Y
yuyang18 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2640

Y
Yu Yang 已提交
2641 2642 2643
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2644
    return _startup_program_
2645

2646

2647
def default_main_program():
Y
Yu Yang 已提交
2648
    """
Y
yuyang18 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2658

Y
Yu Yang 已提交
2659 2660 2661
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2662
    return _main_program_
Y
Yu Yang 已提交
2663 2664 2665 2666 2667


def switch_main_program(program):
    """
    Switch the main program to a new program.
2668

Y
Yu Yang 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2683
    Switch the startup program to a new program
Y
Yu Yang 已提交
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2696
@signature_safe_contextmanager
Y
Yu Yang 已提交
2697 2698
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2699 2700 2701
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2702

Y
Yu Yang 已提交
2703
    Examples:
Y
yuyang18 已提交
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2714

Y
Yu Yang 已提交
2715
    Examples:
Y
yuyang18 已提交
2716 2717 2718 2719 2720 2721

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2722

Y
Yu Yang 已提交
2723
    Args:
Y
yuyang18 已提交
2724
        main_program(Program): New main program inside `with` statement.
2725
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2739 2740


W
Wu Yi 已提交
2741
def _get_var(name, program=None):
X
xuwei06 已提交
2742
    """
Y
yuyang18 已提交
2743
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2744

X
xuwei06 已提交
2745 2746 2747
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2748
        If None, default_global_program() will be used.
X
xuwei06 已提交
2749 2750 2751 2752 2753 2754 2755

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2756
    assert isinstance(program, Program)
X
xuwei06 已提交
2757 2758

    return program.global_block().var(name)
2759 2760


S
rename  
sneaxiy 已提交
2761
@signature_safe_contextmanager
2762 2763 2764 2765
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2766

2767
    yield
P
Paddle CI 已提交
2768

2769
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
2770 2771


S
rename  
sneaxiy 已提交
2772
@signature_safe_contextmanager
P
Paddle CI 已提交
2773
def _imperative_place_guard(place):
M
minqiyang 已提交
2774 2775 2776
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2777

2778
    yield
M
minqiyang 已提交
2779

M
minqiyang 已提交
2780
    _imperative_current_expected_place_ = tmp_place