test_pool2d_op.cc 3.0 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
#include <gtest/gtest.h>
#include <fstream>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"

namespace paddle {
namespace inference {
namespace tensorrt {

TEST(Pool2dOpConverter, main) {
  framework::Scope scope;
  std::unordered_set<std::string> parameters;
N
nhzlx 已提交
26
  TRTConvertValidation validator(5, parameters, scope, 1 << 15);
27

N
nhzlx 已提交
28 29
  // The ITensor's Dims should not contain the batch size.
  // So, the ITensor's Dims of input and output should be C * H * W.
30 31
  validator.DeclInputVar("pool2d-X", nvinfer1::Dims3(3, 4, 4));
  validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 2, 2));
N
nhzlx 已提交
32 33 34 35 36 37 38 39

  // Prepare Op description
  framework::OpDesc desc;
  desc.SetType("pool2d");
  desc.SetInput("X", {"pool2d-X"});
  desc.SetOutput("Out", {"pool2d-Out"});

  std::vector<int> ksize({2, 2});
40
  std::vector<int> strides({2, 2});
N
nhzlx 已提交
41 42
  std::vector<int> paddings({0, 0});
  std::string pooling_t = "max";
N
nhzlx 已提交
43
  bool global_pooling = false;
N
nhzlx 已提交
44 45 46 47 48

  desc.SetAttr("pooling_type", pooling_t);
  desc.SetAttr("ksize", ksize);
  desc.SetAttr("strides", strides);
  desc.SetAttr("paddings", paddings);
N
nhzlx 已提交
49
  desc.SetAttr("global_pooling", global_pooling);
N
nhzlx 已提交
50 51 52 53 54

  LOG(INFO) << "set OP";
  validator.SetOp(*desc.Proto());
  LOG(INFO) << "execute";

N
nhzlx 已提交
55
  validator.Execute(3);
N
nhzlx 已提交
56 57
}

N
nhzlx 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
TEST(Pool2dOpConverter, test_global_pooling) {
  framework::Scope scope;
  std::unordered_set<std::string> parameters;
  TRTConvertValidation validator(5, parameters, scope, 1 << 15);

  // The ITensor's Dims should not contain the batch size.
  // So, the ITensor's Dims of input and output should be C * H * W.
  validator.DeclInputVar("pool2d-X", nvinfer1::Dims3(3, 4, 4));
  validator.DeclOutputVar("pool2d-Out", nvinfer1::Dims3(3, 1, 1));

  // Prepare Op description
  framework::OpDesc desc;
  desc.SetType("pool2d");
  desc.SetInput("X", {"pool2d-X"});
  desc.SetOutput("Out", {"pool2d-Out"});

  std::vector<int> ksize({2, 2});
  std::vector<int> strides({2, 2});
  std::vector<int> paddings({0, 0});
  std::string pooling_t = "max";
  bool global_pooling = true;

  desc.SetAttr("pooling_type", pooling_t);
  desc.SetAttr("ksize", ksize);
  desc.SetAttr("strides", strides);
  desc.SetAttr("paddings", paddings);
  desc.SetAttr("global_pooling", global_pooling);

  LOG(INFO) << "set OP";
  validator.SetOp(*desc.Proto());
  LOG(INFO) << "execute";

  validator.Execute(3);
}

N
nhzlx 已提交
93 94 95 96 97
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);