mp_layers.py 18.8 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid import core
W
wangxiaoning 已提交
17
from paddle.nn import Layer
W
wuhuachaocoding 已提交
18
from paddle.nn import functional as F
19

W
wuhuachaocoding 已提交
20
from ...base import topology as tp
21 22
from . import mp_ops
from .random import get_rng_state_tracker
W
wuhuachaocoding 已提交
23 24 25 26 27 28 29 30 31

__all__ = []

# Follow this paper to achieve the file:
# Shoeybi M, Patwary M, Puri R, et al. Megatron-lm: Training multi-billion parameter
# language models using model parallelism[J]. arXiv preprint arXiv:1909.08053, 2019. (https://arxiv.org/abs/1909.08053)


def is_fused_matmul_bias_supported():
姜永久 已提交
32
    return hasattr(core.eager.ops.legacy, 'fused_gemm_epilogue')
W
wuhuachaocoding 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


class VocabParallelEmbedding(Layer):
    """Embedding mp parallelized in the vocabulary dimension.
    this class is used for splitting embedding in mp group.

    Args:
        num_embeddings(int): One element which indicate the size of the dictionary of embeddings.
        embedding_dim(int): One element which indicate the size of each embedding vector respectively.
        weight_attr(ParamAttr|None): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
        mp_group(Group): The tensor parallel group.
        name(str, optional): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
60
              super().__init__()
W
wuhuachaocoding 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

87 88 89 90 91 92 93 94
    def __init__(
        self,
        num_embeddings,
        embedding_dim,
        weight_attr=None,
        mp_group=None,
        name=None,
    ):
95
        super().__init__()
W
wuhuachaocoding 已提交
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
        self.rank = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank()
            if mp_group is None
            else mp_group.rank
        )
W
wuhuachaocoding 已提交
112 113

        self.origin_num_embeddings = num_embeddings
114
        self.is_mp = self.world_size > 1
W
wuhuachaocoding 已提交
115

116 117 118
        assert (
            num_embeddings % self.world_size == 0
        ), "The length of the vocabulary must be divisible by the parallelism degree of MP"
W
wuhuachaocoding 已提交
119 120 121 122 123 124 125 126 127 128 129

        per_part_size = num_embeddings // self.world_size

        self.vocab_start_index = self.rank * per_part_size
        self._dtype = self._helper.get_default_dtype()
        self._size = [per_part_size, embedding_dim]
        self._weight_attr = weight_attr
        self._name = name

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
130 131 132 133 134 135
                self.weight = self.create_parameter(
                    attr=self._weight_attr,
                    shape=self._size,
                    dtype=self._dtype,
                    is_bias=False,
                )
W
wuhuachaocoding 已提交
136
        else:
137 138 139 140 141 142
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=self._size,
                dtype=self._dtype,
                is_bias=False,
            )
W
wuhuachaocoding 已提交
143 144

        self.weight.is_distributed = True if self.is_mp else False
145 146
        if self.weight.is_distributed:
            setattr(self.weight, "split_axis", 0)
W
wuhuachaocoding 已提交
147 148 149 150 151 152 153

    def forward(self, x):
        if self.is_mp:
            output_parallel = mp_ops._c_lookup_table(
                self.weight,
                x,
                start_index=self.vocab_start_index,
154 155 156 157 158 159 160 161
                name=self._name,
            )
            output = mp_ops._mp_allreduce(
                output_parallel,
                group=self.model_parallel_group,
                use_calc_stream=True,
                use_model_parallel=True,
            )
W
wuhuachaocoding 已提交
162
        else:
163 164 165 166 167 168 169
            output = F.embedding(
                x,
                weight=self.weight,
                padding_idx=None,
                sparse=False,
                name=self._name,
            )
W
wuhuachaocoding 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        return output


class ColumnParallelLinear(Layer):
    """Linear layer with mp parallelized(column).
    this class is used for splitting Linear Layer in mp group, column split the weight of the Linear layer.

    Args:
        in_features(int): The number of input units.
        out_features(int): The number of output units.
        weight_attr(ParamAttr|None): The attribute for the learnable weight of this layer. The default value is None
            and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr.
        has_bias(bool): whether to add bias.
        gather_output(bool): whether to do allgahter for the output of each rank.
        fuse_matmul_bias(bool): whether to fuse matmul and bias.
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
196
              super().__init__()
W
wuhuachaocoding 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

223 224 225 226 227 228 229 230 231 232 233
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        has_bias=None,
        gather_output=True,
        fuse_matmul_bias=False,
        mp_group=None,
        name=None,
    ):
234
        super().__init__()
W
wuhuachaocoding 已提交
235

236 237 238 239 240 241 242 243 244 245
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
W
wuhuachaocoding 已提交
246
        self._name = name
247
        self.is_mp = self.world_size > 1
W
wuhuachaocoding 已提交
248 249 250 251 252

        self.gather_output = gather_output
        assert out_features % self.world_size == 0, (
            "Number of column of the weight for linear ({}) must be"
            " divisible by model parallel size ({})".format(
253 254 255
                out_features, self.world_size
            )
        )
W
wuhuachaocoding 已提交
256 257 258 259 260 261 262 263 264 265 266
        self.output_size_per_partition = out_features // self.world_size

        self._weight_attr = weight_attr
        self._dtype = self._helper.get_default_dtype()

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(
                    shape=[in_features, self.output_size_per_partition],
                    attr=self._weight_attr,
                    dtype=self._dtype,
267 268
                    is_bias=False,
                )
W
wuhuachaocoding 已提交
269 270 271 272 273
        else:
            self.weight = self.create_parameter(
                shape=[in_features, self.output_size_per_partition],
                attr=self._weight_attr,
                dtype=self._dtype,
274 275
                is_bias=False,
            )
W
wuhuachaocoding 已提交
276 277 278

        self.weight.is_distributed = True if self.is_mp else False

279 280 281
        if self.weight.is_distributed:
            setattr(self.weight, "split_axis", 1)

W
wuhuachaocoding 已提交
282 283 284 285 286 287
        if has_bias:
            # initialize bias to zero like Megatron
            self.bias = self.create_parameter(
                shape=[self.output_size_per_partition],
                attr=paddle.nn.initializer.Constant(value=0.0),
                dtype=self._dtype,
288 289
                is_bias=True,
            )
W
wuhuachaocoding 已提交
290
            self.bias.is_distributed = True if self.is_mp else False
291 292
            if self.bias.is_distributed:
                setattr(self.bias, "split_axis", 0)
W
wuhuachaocoding 已提交
293 294 295 296 297 298 299 300 301 302 303
        else:
            self.bias = None

        self.linear = F.linear

        if fuse_matmul_bias:
            if not is_fused_matmul_bias_supported():
                raise NotImplementedError(
                    "You set fuse_matmul_bias=True in ColumnParallelLinear, "
                    "however, the paddle you are using not support this operation. "
                    "Please set fuse_matmul_bias=False or use paddle compiled "
304 305
                    "with cuda 11.6 or higher."
                )
W
wuhuachaocoding 已提交
306
            from paddle.incubate.nn.functional import fused_linear
307

W
wuhuachaocoding 已提交
308 309 310 311 312
            self.linear = fused_linear

    def forward(self, x):
        # use inner api to process identity
        if self.is_mp:
313 314 315
            input_parallel = mp_ops._c_identity(
                x, group=self.model_parallel_group
            )
W
wuhuachaocoding 已提交
316 317 318
        else:
            input_parallel = x

319 320 321
        output_parallel = self.linear(
            input_parallel, self.weight, self.bias, name=self._name
        )
W
wuhuachaocoding 已提交
322 323

        if self.gather_output and self.is_mp:
324 325 326
            output = mp_ops._c_concat(
                output_parallel, group=self.model_parallel_group
            )
W
wuhuachaocoding 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        else:
            output = output_parallel
        return output


class RowParallelLinear(Layer):
    """Linear layer with mp parallelized(row).
    this class is used for splitting Linear Layer in mp group, row split the weight of the Linear layer.

    Args:
        in_features(int): The number of input units.
        out_features(int): The number of output units.
        weight_attr(ParamAttr|None): The attribute for the learnable weight of this layer. The default value is None
            and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr.
        has_bias(bool): whether to add bias.
        input_is_parallel(bool): whether the input has alreadly been splitted across the mp group.
        fuse_matmul_bias(bool): whether to fuse matmul and bias.
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
355
              super().__init__()
W
wuhuachaocoding 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

382 383 384 385 386 387 388 389 390 391 392
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        has_bias=True,
        input_is_parallel=False,
        fuse_matmul_bias=False,
        mp_group=None,
        name=None,
    ):
393
        super().__init__()
W
wuhuachaocoding 已提交
394 395 396 397 398 399 400 401

        self.in_features = in_features
        self.out_features = out_features
        self.input_is_parallel = input_is_parallel
        self._weight_attr = weight_attr
        self._dtype = self._helper.get_default_dtype()
        self._name = name

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
        self.rank = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank()
            if mp_group is None
            else mp_group.rank
        )
W
wuhuachaocoding 已提交
417

418
        self.is_mp = self.world_size > 1
W
wuhuachaocoding 已提交
419 420 421
        assert in_features % self.world_size == 0, (
            "Number of row of the weight for linear ({}) must be"
            " divisible by model parallel size ({})".format(
422 423 424
                in_features, self.world_size
            )
        )
W
wuhuachaocoding 已提交
425 426 427 428 429 430 431 432 433

        self.input_size_per_partition = in_features // self.world_size

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(
                    shape=[self.input_size_per_partition, self.out_features],
                    attr=self._weight_attr,
                    dtype=self._dtype,
434 435
                    is_bias=False,
                )
W
wuhuachaocoding 已提交
436 437 438 439 440
        else:
            self.weight = self.create_parameter(
                shape=[self.input_size_per_partition, self.out_features],
                attr=self._weight_attr,
                dtype=self._dtype,
441 442
                is_bias=False,
            )
W
wuhuachaocoding 已提交
443 444

        self.weight.is_distributed = True if self.is_mp else False
445 446
        if self.weight.is_distributed:
            setattr(self.weight, "split_axis", 0)
W
wuhuachaocoding 已提交
447 448 449 450 451 452

        if has_bias:
            self.bias = self.create_parameter(
                shape=[self.out_features],
                attr=paddle.nn.initializer.Constant(value=0.0),
                dtype=self._dtype,
453 454
                is_bias=True,
            )
W
wuhuachaocoding 已提交
455 456 457 458 459 460 461 462 463 464 465
        else:
            self.bias = None

        self.linear = F.linear

        if fuse_matmul_bias:
            if not is_fused_matmul_bias_supported():
                raise NotImplementedError(
                    "You set fuse_matmul_bias=True in RowParallelLinear, "
                    "however, the paddle you are using not support this operation. "
                    "Please set fuse_matmul_bias=False or use paddle compiled "
466 467
                    "with cuda 11.6 or higher."
                )
W
wuhuachaocoding 已提交
468
            from paddle.incubate.nn.functional import fused_linear
469

W
wuhuachaocoding 已提交
470 471 472 473 474 475 476 477 478 479
            self.linear = fused_linear

    def forward(self, x):
        if self.input_is_parallel or (not self.is_mp):
            input_parallel = x
        else:
            # split last dim
            input_parallel = mp_ops._c_split(x, group=self.model_parallel_group)

        if self.is_mp:
480 481 482 483 484 485 486 487 488
            output_parallel = self.linear(
                input_parallel, self.weight, name=self._name
            )
            output_ = mp_ops._mp_allreduce(
                output_parallel,
                group=self.model_parallel_group,
                use_calc_stream=True,
                use_model_parallel=True,
            )
W
wuhuachaocoding 已提交
489 490
            output = output_ + self.bias if self.bias is not None else output_
        else:
491 492 493
            output = self.linear(
                input_parallel, self.weight, self.bias, name=self._name
            )
W
wuhuachaocoding 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

        return output


class ParallelCrossEntropy(Layer):
    """CrossEntropy with mp parallelized.
    this class is used for splitting softmax cross entropy in mp group.

    Args:
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        loss_func = ParallelCrossEntropy()
        loss = loss_func(img, lable)
    """

    def __init__(self, mp_group=None, name=None):
514
        super().__init__()
W
wuhuachaocoding 已提交
515
        self.name = name
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
        self.rank = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank()
            if mp_group is None
            else mp_group.rank
        )
W
wuhuachaocoding 已提交
531 532 533

    def forward(self, input, label):
        loss = mp_ops._c_softmax_with_cross_entropy(
534 535
            input, label, group=self.model_parallel_group
        )
W
wuhuachaocoding 已提交
536
        return loss