fuse_all_reduce.py 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.framework import core
from paddle.fluid import unique_name
from .pass_base import CommOptPass, register_pass
from collections import OrderedDict
import numpy as np


def find_adjacent_match_sequences(iterable,
                                  filter_func,
                                  adjacent_filter_func=None):
    n = len(iterable)
    match_sequences = []
    if adjacent_filter_func is None:
        adjacent_filter_func = lambda ref_op, new_op: True
    i = 0
    while True:
        while i < n and not filter_func(iterable[i]):
            i += 1
        j = i + 1
        while j < n and filter_func(iterable[j]) and adjacent_filter_func(
                iterable[i], iterable[j]):
            j += 1
        if i < n and j <= n:
            match_sequences.append((i, j))
        i = j + 1
        if i >= n:
            break
    return match_sequences


def insert_fuse_all_reduce_ops(block, reversed_op_indices, input_var_names,
                               output_var_names, dtype, attrs):
    fused_var = block.create_var(
        name=unique_name.generate("FusedOutput_{}".format(input_var_names[0])),
        dtype=dtype)

    # FIXME(zengjinle): here we assume that we use 
    # c_sync_calc_stream/c_sync_comm_stream to do sync. 
    # But someone may use c_wait_compute/c_wait_comm instead.
    if not attrs["use_calc_stream"]:
        ring_id = attrs["ring_id"]
        new_op_indices = list(reversed_op_indices)

        for i, op_idx in enumerate(reversed_op_indices):
            prev_op_idx = op_idx - 1
            while prev_op_idx >= 0 and block.ops[
                    prev_op_idx].type == "c_sync_calc_stream":
                new_op_indices.append(prev_op_idx)
                prev_op_idx -= 1

            if i > 0:
                next_op_idx = op_idx + 1
                n = len(block.ops)
                while next_op_idx < n and block.ops[
                        next_op_idx].type == "c_sync_comm_stream":
                    assert block.ops[next_op_idx].attr("ring_id") == ring_id
                    new_op_indices.append(next_op_idx)

        new_op_indices = list(set(new_op_indices))
        new_op_indices.sort(reverse=True)
        reversed_op_indices = new_op_indices

    insert_idx = reversed_op_indices[0] + 1
    op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()

    concated_shapes = []
    concated_ranks = []
    for var_name in output_var_names:
        shape = block._find_var_recursive(var_name).shape
        concated_shapes.extend(shape)
        concated_ranks.append(len(shape))

    coalesce_tensor_op_kwargs = {
        "type": "coalesce_tensor",
        "inputs": {
            "Input": input_var_names,
        },
        "outputs": {
            "Output": output_var_names,
            "FusedOutput": fused_var,
        },
        "attrs": {
            "use_align": True,
            "dtype": dtype,
            "concated_shapes": concated_shapes,
            "concated_ranks": concated_ranks,
            op_role_key: attrs[op_role_key],
        },
    }

    if not attrs["use_calc_stream"]:
        block._insert_op_without_sync(
            insert_idx,
            type="c_sync_calc_stream",
            inputs={"X": fused_var},
            outputs={"Out": fused_var,
                     op_role_key: attrs[op_role_key]})
        insert_idx += 1

    # c_allreduce_sum should insert  
    block._insert_op_without_sync(
        insert_idx,
        type="c_allreduce_sum",
        inputs={"X": fused_var},
        outputs={"Out": fused_var},
        attrs=attrs)

    for op_idx in reversed_op_indices:
        block._remove_op(op_idx)

    return coalesce_tensor_op_kwargs


def has_same_attrs(op1, op2, attr_names):
    for attr_name in attr_names:
        if op1.attr(attr_name) != op2.attr(attr_name):
            return False
    return True


def filter_all_collective_op_indices(block):
    # NOTE: should add more collective ops
    all_collective_ops = {
        "c_allreduce_sum",
        "c_allreduce_prod",
        "c_allreduce_max",
        "c_allreduce_min",
        "c_allgather",
        "c_broadcast",
    }

    match_op_indices = []
    for i, op in enumerate(block.ops):
        if op.type in all_collective_ops:
            match_op_indices.append(i)
    return match_op_indices


def find_all_fuse_all_reduce_groups(block):
    collective_op_indices = filter_all_collective_op_indices(block)
    collective_ops = [block.ops[i] for i in collective_op_indices]

    def is_valid_allreduce_op(op):
        if op.type != "c_allreduce_sum" or op.attr("use_model_parallel"):
            return False
        in_var_name = op.input("X")[0]
        out_var_name = op.output("Out")[0]
        if in_var_name != out_var_name:
            return False
        in_var = block._find_var_recursive(in_var_name)
        assert in_var is not None
        if in_var.type != core.VarDesc.VarType.LOD_TENSOR:
            return False
        shape = in_var.shape
        if any([s <= 0 for s in shape]):
            return False
        return True

    same_attr_names = [
        "ring_id",
        "use_calc_stream",
        core.op_proto_and_checker_maker.kOpRoleAttrName(),
        core.op_proto_and_checker_maker.kOpDeviceAttrName(),
    ]

    def is_same_adjacent_op(ref_op, new_op):
        if not has_same_attrs(ref_op, new_op, same_attr_names):
            return False
        ref_op_in_var = block._find_var_recursive(ref_op.input("X")[0])
        new_op_in_var = block._find_var_recursive(new_op.input("X")[0])
        if ref_op_in_var.dtype != new_op_in_var.dtype:
            return False
        return True

    match_seqs = find_adjacent_match_sequences(
        collective_ops, is_valid_allreduce_op, is_same_adjacent_op)
    new_match_seqs = []
    for i, j in match_seqs:
        new_match_seqs.append([collective_op_indices[k] for k in range(i, j)])
    return new_match_seqs


def split_fuse_all_reduce_groups_by_deps(block, groups, op_deps):
    new_groups = []

    def insert_new_group(op_indices, start_idx, end_idx):
        if end_idx - start_idx > 1:
            new_groups.append(op_indices[start_idx:end_idx])

    for op_indices in groups:
        n = len(op_indices)
        assert n > 0
        if n == 1:
            continue

        start_idx = 0
        k = start_idx + 1
        while k < n:
            found_group = False
            for prev_idx in range(start_idx, k):
                dep = op_deps[op_indices[prev_idx]][op_indices[k]]
                if dep == core.Node.Dep.NoDep:
                    continue
                # [start_idx, k) is valid groups
                insert_new_group(op_indices, start_idx, k)
                start_idx = k
                break
            k += 1

        insert_new_group(op_indices, start_idx, k)

    return new_groups


def insert_coalesce_tensor_ops(block, coalesce_ops_kwargs):
    if not coalesce_ops_kwargs:
        return

    var_infos = {}
    for idx, op in enumerate(block.ops):
        for var in op.input_arg_names:
            if var not in var_infos:
                var_infos[var] = [idx, True]

        for var in op.output_arg_names:
            if var not in var_infos:
                var_infos[var] = [idx, False]

    n = len(block.ops)
    insert_idx_and_kwargs = []
    for group_idx, kwargs in enumerate(coalesce_ops_kwargs):
        all_vars = kwargs["inputs"]["Input"] + kwargs["outputs"]["Output"]
        min_op_idx = n
        copy_data = False
        for var in all_vars:
            if var not in var_infos:
                copy_data = True
                min_idx = 0
                break
            op_idx, is_input = var_infos[var]
            if is_input:
                copy_data = True
            min_op_idx = min(min_op_idx, op_idx)
        kwargs["attrs"]["copy_data"] = copy_data
        insert_idx_and_kwargs.append((min_op_idx, kwargs))

    insert_idx_and_kwargs.sort(key=lambda element: element[0], reverse=True)
    for idx, kwargs in insert_idx_and_kwargs:
        block._insert_op_without_sync(idx, **kwargs)


def insert_fuse_all_reduce_by_memory_size(block, groups, max_memory_size):
    op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()
    op_role_var_key = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
    op_device_key = core.op_proto_and_checker_maker.kOpDeviceAttrName()
    coalesce_ops_kwargs = []
    for group in reversed(groups):
        first_op = block.ops[group[0]]
        ring_id = first_op.attr("ring_id")
        use_calc_stream = first_op.attr("use_calc_stream")
        use_model_parallel = first_op.attr("use_model_parallel")
        op_role = first_op.attr(op_role_key)
        op_device = first_op.attr(op_device_key)

        attrs = {
            "ring_id": ring_id,
            "use_calc_stream": use_calc_stream,
            "use_model_parallel": use_model_parallel,
            op_role_key: op_role,
            op_device_key: op_device,
        }
        dtype = block._find_var_recursive(first_op.input("X")[0]).dtype
        sizeof = core.size_of_dtype(dtype)

        cur_mem_size = 0
        op_role_vars = []
        recorded_op_indices = []
        in_var_names = []
        out_var_names = []
        for op_idx in reversed(group):
            op = block.ops[op_idx]
            in_var_name = op.input("X")[0]
            out_var_name = op.output("Out")[0]
            in_var = block._find_var_recursive(in_var_name)
            mem_size = int(np.prod(in_var.shape)) * sizeof
            if cur_mem_size + mem_size > max_memory_size:
                if len(recorded_op_indices) > 1:
                    attrs[op_role_var_key] = op_role_vars
                    coalesce_op_kwargs = insert_fuse_all_reduce_ops(
                        block, recorded_op_indices, in_var_names, out_var_names,
                        dtype, attrs)
                    coalesce_ops_kwargs.append(coalesce_op_kwargs)

                cur_mem_size = 0
                op_role_vars = []
                recorded_op_indices = []
                in_var_names = []
                out_var_names = []

            cur_mem_size += mem_size
            recorded_op_indices.append(op_idx)
            in_var_names.append(in_var_name)
            out_var_names.append(out_var_name)
            if op.has_attr(op_role_var_key):
                op_role_vars.extend(op.attr(op_role_var_key))

        if len(recorded_op_indices) > 1:
            attrs[op_role_var_key] = op_role_vars
            coalesce_op_kwargs = insert_fuse_all_reduce_ops(
                block, recorded_op_indices, in_var_names, out_var_names, dtype,
                attrs)
            coalesce_ops_kwargs.append(coalesce_op_kwargs)
    block._sync_with_cpp()
    insert_coalesce_tensor_ops(block, coalesce_ops_kwargs)


@register_pass("fuse_all_reduce")
class FuseAllReducePass(CommOptPass):
    def __init__(self):
        super(FuseAllReducePass, self).__init__()
        self.set_attr("max_memory_size", -1)

    def _check_self(self):
        max_memory_size = self.get_attr("max_memory_size")
        return max_memory_size > 0

    def _check_conflict(self, other_pass):
        return True

    # NOTE: why FuseAllReducePass can override apply_single_impl instead of 
    # apply_impl? AllReduce is a collective operation, so the program of each 
    # rank inside the same communication group should have the same 
    # c_allreduce_sum operations. Therefore, FuseAllReducePass can override 
    # apply_single_impl directly.  
    def _apply_single_impl(self, main_program, startup_program, context):
        max_memory_size = self.get_attr("max_memory_size")
        op_deps = main_program.desc.get_op_deps()
        num_blocks = main_program.num_blocks
        for i in range(num_blocks):
            block = main_program.block(i)
            groups = find_all_fuse_all_reduce_groups(block)
            groups = split_fuse_all_reduce_groups_by_deps(block, groups,
                                                          op_deps[i])
            insert_fuse_all_reduce_by_memory_size(block, groups,
                                                  max_memory_size)
        main_program._sync_with_cpp()