test_dist_inference_save.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
from test_dist_base import TestDistBase

import os
import sys
import signal
import subprocess
import paddle.compat as cpt


class TestDistMnist2x2(TestDistBase):
    def _setup_config(self):
        self._sync_mode = True

    def check_with_place(self, model_file, delta=1e-3, check_error_log=False):
        # *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
        required_envs = {
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH"),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH"),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_cudnn_deterministic": "1"
        }

        if check_error_log:
            required_envs["GLOG_v"] = "7"
            required_envs["GLOG_logtostderr"] = "1"

        # Run local to get a base line
        env_local = {"CUDA_VISIBLE_DEVICES": "0"}
        env_local.update(required_envs)
        sync_mode_str = "TRUE" if self._sync_mode else "FALSE"
        local_cmd = "%s %s trainer %s 0 %s %d FLASE %s" % \
                    (self._python_interp, model_file,
                     "127.0.0.1:1234", "127.0.0.1:1234", 1, sync_mode_str)
        if not check_error_log:
            local_proc = subprocess.Popen(
                local_cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                env=env_local)
        else:
            print("trainer cmd:", local_cmd)
            err_log = open("/tmp/trainer.err.log", "wb")
            local_proc = subprocess.Popen(
                local_cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=err_log,
                env=env_local)

        local_proc.wait()
        out, err = local_proc.communicate()
        local_ret = cpt.to_text(out)
        sys.stderr.write('local_loss: %s\n' % local_ret)
        sys.stderr.write('local_stderr: %s\n' % err)

        # Run dist train to compare with local results
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model_file,
                                                          check_error_log)
        self._wait_ps_ready(ps0.pid)
        self._wait_ps_ready(ps1.pid)

        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
        tr0_cmd = "%s %s trainer %s 0 %s %d TRUE %s" % \
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers, sync_mode_str)
        tr1_cmd = "%s %s trainer %s 1 %s %d TRUE %s" % \
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers, sync_mode_str)

        env0 = {"CUDA_VISIBLE_DEVICES": "0"}
        env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        env0.update(required_envs)
        env1.update(required_envs)
        FNULL = open(os.devnull, 'w')

        tr0_pipe = subprocess.PIPE
        tr1_pipe = subprocess.PIPE
        if check_error_log:
            print("tr0_cmd:", tr0_cmd)
            print("tr1_cmd:", tr1_cmd)
            tr0_pipe = open("/tmp/tr0_err.log", "wb")
            tr1_pipe = open("/tmp/tr1_err.log", "wb")

        tr0_proc = subprocess.Popen(
            tr0_cmd.split(" "),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=env0)
        tr1_proc = subprocess.Popen(
            tr1_cmd.split(" "),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=env1)

        tr0_proc.wait()
        tr1_proc.wait()
        out, err = tr0_proc.communicate()
        sys.stderr.write('dist_stderr: %s\n' % err)
        loss_data0 = cpt.to_text(out)
        sys.stderr.write('dist_loss: %s\n' % loss_data0)
        lines = loss_data0.split("\n")
        dist_first_loss = eval(lines[0].replace(" ", ","))[0]
        dist_last_loss = eval(lines[1].replace(" ", ","))[0]

        local_lines = local_ret.split("\n")
        local_first_loss = eval(local_lines[0])[0]
        local_last_loss = eval(local_lines[1])[0]

        # close trainer file
        if check_error_log:
            tr0_pipe.close()
            tr1_pipe.close()

            ps0_pipe.close()
            ps1_pipe.close()
        # FIXME: use terminate() instead of sigkill.
        os.kill(ps0.pid, signal.SIGKILL)
        os.kill(ps1.pid, signal.SIGKILL)
        FNULL.close()

        self.assertAlmostEqual(local_first_loss, dist_first_loss, delta=delta)
        self.assertAlmostEqual(local_last_loss, dist_last_loss, delta=delta)

    @unittest.skip(reason="Not Ready, Debugging")
    def test_dist_save_inference_model(self):
        self.check_with_place("dist_simnet_bow.py", delta=1e-7)


if __name__ == "__main__":
    unittest.main()