test_prune.py 37.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import paddle
18 19
import paddle.fluid as fluid
import paddle.fluid.framework as framework
20 21 22
import numpy as np
import os
import contextlib
23 24 25 26 27 28 29 30


class TestPrune(unittest.TestCase):
    def net(self):
        x = fluid.layers.data(name='x', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        y = fluid.layers.fc(input=[x], size=2, act="softmax")
        loss = fluid.layers.cross_entropy(input=y, label=label)
31
        loss = paddle.mean(x=loss)
32 33 34 35 36 37 38 39 40
        return x, y, label, loss

    def test_prune_with_input(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
41 42 43 44 45 46 47 48 49 50
        self.assertEqual(
            [op.type for op in block.ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
                "cross_entropy2",
                "reduce_mean",
            ],
        )
51
        pruned_program = program._prune_with_input(
52 53
            feeded_var_names=[y.name, label.name], targets=[loss]
        )
54
        self.assertEqual(len(pruned_program.global_block().ops), 2)
55 56 57 58
        self.assertEqual(
            [op.type for op in pruned_program.global_block().ops],
            ["cross_entropy2", "reduce_mean"],
        )
59 60 61 62 63 64 65 66

    def test_prune(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
67 68 69 70 71 72 73 74 75 76
        self.assertEqual(
            [op.type for op in block.ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
                "cross_entropy2",
                "reduce_mean",
            ],
        )
77 78
        pruned_program = program._prune(targets=[loss])
        self.assertEqual(len(pruned_program.global_block().ops), 5)
79 80 81 82 83 84 85 86 87 88
        self.assertEqual(
            [op.type for op in pruned_program.global_block().ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
                "cross_entropy2",
                "reduce_mean",
            ],
        )
89 90 91 92 93 94 95 96

    def test_prune_target_not_list(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
97 98 99 100 101 102 103 104 105 106
        self.assertEqual(
            [op.type for op in block.ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
                "cross_entropy2",
                "reduce_mean",
            ],
        )
107 108
        pruned_program = program._prune(targets=loss)
        self.assertEqual(len(pruned_program.global_block().ops), 5)
109 110 111 112 113 114 115 116 117 118
        self.assertEqual(
            [op.type for op in pruned_program.global_block().ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
                "cross_entropy2",
                "reduce_mean",
            ],
        )
119 120 121 122 123 124 125 126

    def test_prune_target_none(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
127 128 129 130 131 132 133 134 135 136
        self.assertEqual(
            [op.type for op in block.ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
                "cross_entropy2",
                "reduce_mean",
            ],
        )
137 138 139
        try:
            pruned_program = program._prune(targets=None)
        except ValueError as e:
140 141
            self.assertIn(
                "All targets of Program._prune_with_input() can only be Variable or Operator",
142 143
                str(e),
            )
144 145


146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
def mock(self, program, feed, fetch, optimize_ops):
    self.prune_called_times += 1
    return program


@contextlib.contextmanager
def _mock_guard(mock):
    original = fluid.Executor._prune_program
    fluid.Executor._prune_program = mock
    yield
    fluid.Executor._prune_program = original


class TestExecutorRunAutoPrune(unittest.TestCase):
    def net1(self):
        x = fluid.layers.data(name='x', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        w_param_attrs = fluid.ParamAttr(
            name="fc_weight",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
167 168 169 170 171
            trainable=True,
        )
        y = fluid.layers.fc(
            input=[x], size=2, act="softmax", param_attr=w_param_attrs
        )
172
        loss1 = fluid.layers.cross_entropy(input=y, label=label)
173
        loss1 = paddle.mean(x=loss1)
174
        loss2 = fluid.layers.cross_entropy(input=y, label=label)
175
        loss2 = paddle.mean(x=loss2)
176 177 178 179 180 181 182 183 184 185 186 187
        loss1.persistable = True
        loss2.persistable = True
        return x, y, label, loss1, loss2, w_param_attrs

    def net2(self):
        x1 = fluid.layers.data(name='x1', shape=[2], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        w1_param_attrs = fluid.ParamAttr(
            name="fc_weight1",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
188 189
            trainable=True,
        )
190 191 192 193
        w2_param_attrs = fluid.ParamAttr(
            name="fc_weight2",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
194 195 196 197 198 199 200 201
            trainable=True,
        )
        y1 = fluid.layers.fc(
            input=[x1], size=2, act="softmax", param_attr=w1_param_attrs
        )
        y2 = fluid.layers.fc(
            input=[x2], size=2, act="softmax", param_attr=w2_param_attrs
        )
202
        loss1 = fluid.layers.cross_entropy(input=y1, label=label)
203
        loss1 = paddle.mean(x=loss1)
204
        loss2 = fluid.layers.cross_entropy(input=y2, label=label)
205
        loss2 = paddle.mean(x=loss2)
206 207 208 209 210 211 212 213 214 215 216
        return (
            x1,
            x2,
            y1,
            y2,
            label,
            loss1,
            loss2,
            w1_param_attrs,
            w2_param_attrs,
        )
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    def test_not_prune(self):
        """
        If use_prune = False, the targets which is not fetched will be calculated.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
232 233 234 235 236 237
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False,
                )
238 239 240 241 242
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNotNone(scope.find_var(loss2.name))

    def test_prune_fetches_without_optimizer(self):
        """
243
        Prune operators and variables which are not needed to generate 'fetches'.
244 245 246 247 248 249 250 251 252 253
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
254 255
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
256 257
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
258 259 260 261 262 263
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True,
                )
264
                self.assertIsNotNone(scope.find_var(loss1.name))
265
                self.assertIsNone(scope.find_var(loss2.name))  # loss2 is pruned
266
                weight = np.array(
267 268 269 270 271
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                np.testing.assert_array_equal(
                    weight_init, weight
                )  # weight not changed
272 273 274

    def test_prune_fetches_with_optimizer(self):
        """
275
        Prune operators and operators which are not needed to generate 'fetches'.
276 277 278 279 280 281 282 283 284 285 286 287 288
        In train mode, the operators and operators in backward and optimization should be kept.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
289 290
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
291 292
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
293 294 295 296 297 298
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True,
                )
299
                self.assertIsNotNone(scope.find_var(loss1.name))
300
                self.assertIsNone(scope.find_var(loss2.name))  # loss2 is pruned
301
                weight = np.array(
302 303 304 305 306
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                self.assertFalse(
                    np.array_equal(weight_init, weight)
                )  # weight changed
307 308 309 310 311 312 313 314 315 316 317 318 319

    def test_prune_compiled_program(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                compiled_prog = fluid.CompiledProgram(
320 321 322 323
                    program
                ).with_data_parallel(
                    loss_name=loss1.name, places=fluid.CPUPlace()
                )
324
                weight_init = np.array(
325 326
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
327 328
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
329 330 331 332 333 334
                res = exe.run(
                    compiled_prog,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True,
                )
335 336 337
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
338 339 340 341 342
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                self.assertFalse(
                    np.array_equal(weight_init, weight)
                )  # weight changed
343 344 345 346 347 348 349 350 351 352 353

    def test_prune_feed_without_optimizer(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
354 355
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
356 357
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
358 359 360 361 362 363
                res = exe.run(
                    program,
                    feed={y.name: x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True,
                )
364 365 366
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
367 368 369 370 371
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                np.testing.assert_array_equal(
                    weight_init, weight
                )  # weight unchanged
372 373 374 375 376 377 378 379 380 381 382 383 384 385

    def test_prune_feed_with_optimizer(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
386 387 388 389 390 391 392 393
                self.assertRaises(
                    Exception,
                    exe.run,
                    program,
                    feed={y.name: x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True,
                )
394 395 396 397 398
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))

    def test_prune_with_cache_program(self):
        '''
399
        When use_prune=True, Executor should cache the pruned program.
400 401 402
        If in next run, the program, feed, fetch are not changed, Executor use the cached pruned program,
        and needn't to call  _prune_program() to prune the program.
        In this test, we hack the Executor._prune_program with a mock function which do nothing but increase
403
        Executor.prune_called_times, and we check prune_called_times equals 1 even if we called exe.run()
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        10 times with the same input arguments.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                    sgd_optimizer.minimize(loss1)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
419 420 421
                    label_np = np.random.randint(1, size=(10, 1)).astype(
                        'int64'
                    )
422
                    for i in range(10):
423 424 425 426 427 428
                        res = exe.run(
                            program,
                            feed={'x': x_np, 'label': label_np},
                            fetch_list=[loss1.name],
                            use_prune=True,
                        )
429 430 431 432 433
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        else:
                            self.assertEqual(exe.prune_called_times, 1)

434 435 436
    def test_prune_with_cache_program2(self):
        '''
        When use_prune=True, Executor should cache the pruned program.
437
        If the only difference in fetch_list is  optimize_ops during multiple runs,
438 439 440 441 442 443 444 445 446 447
        the cache_keys should be different and get different pruned program.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
448 449 450 451 452 453 454 455 456 457 458
                    (
                        x1,
                        x2,
                        y1,
                        y2,
                        label,
                        loss1,
                        loss2,
                        w1_param_attrs,
                        w2_param_attrs,
                    ) = self.net2()
459
                    adam_optimizer1 = fluid.optimizer.AdamOptimizer(
460 461
                        learning_rate=0.5
                    )
462 463
                    train1 = adam_optimizer1.minimize(loss1)
                    adam_optimizer2 = fluid.optimizer.AdamOptimizer(
464 465
                        learning_rate=0.5
                    )
466 467 468
                    train2 = adam_optimizer2.minimize(loss2)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
469 470 471
                    label_np = np.random.randint(1, size=(10, 1)).astype(
                        'int64'
                    )
472 473 474

                    for i in range(10):
                        if i % 2:
475 476 477 478 479 480 481 482 483 484
                            res = exe.run(
                                program,
                                feed={
                                    'x1': x_np,
                                    'x2': x_np,
                                    'label': label_np,
                                },
                                fetch_list=[loss1, loss2, train1],
                                use_prune=True,
                            )
485
                        else:
486 487 488 489 490 491 492 493 494 495
                            res = exe.run(
                                program,
                                feed={
                                    'x1': x_np,
                                    'x2': x_np,
                                    'label': label_np,
                                },
                                fetch_list=[loss1, loss2, train2],
                                use_prune=True,
                            )
496 497 498 499 500 501 502
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        elif i == 1:
                            self.assertEqual(exe.prune_called_times, 2)
                        else:
                            self.assertEqual(exe.prune_called_times, 2)

503 504
    def test_prune_with_cache_compiled_program(self):
        '''
505
        When use_prune=True, Executor should cache the pruned program.
506 507 508
        If in next run, the program, feed, fetch are not changed, Executor use the cached pruned program,
        and needn't to call  _prune_program() to prune the program.
        In this test, we hack the Executor._prune_program with a mock function which do nothing but increase
509
        Executor.prune_called_times, and we check prune_called_times equals 1 even if we called exe.run()
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        10 times with the same input arguments.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                    sgd_optimizer.minimize(loss1)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
525 526 527
                    label_np = np.random.randint(1, size=(10, 1)).astype(
                        'int64'
                    )
528
                    compiled_prog = fluid.CompiledProgram(
529 530 531 532
                        program
                    ).with_data_parallel(
                        loss_name=loss1.name, places=fluid.CPUPlace()
                    )
533
                    for i in range(10):
534 535 536 537 538 539
                        res = exe.run(
                            compiled_prog,
                            feed={'x': x_np, 'label': label_np},
                            fetch_list=[loss1.name],
                            use_prune=True,
                        )
540 541 542 543 544 545 546
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        else:
                            self.assertEqual(exe.prune_called_times, 1)

    def test_prune_with_multi_optimizers(self):
        '''
547
        If there are multiple optimizers in the program, we can run specific one by
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        pass the return of optimize.minimize() to fetch_list.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1, _ = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()
                train2, _ = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
565 566 567 568 569 570
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False,
                )
571
                weight_without_prune = np.array(
572 573
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
574 575 576 577 578

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
579 580 581 582 583 584
            res = exe.run(
                program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name, train1],
                use_prune=True,
            )
585
            weight_with_prune = np.array(
586 587
                scope.find_var(w_param_attrs.name).get_tensor()
            )
588 589 590 591 592

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
593 594 595 596 597 598
            exe.run(
                cloned_program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name],
                use_prune=False,
            )
599
            weight_expected = np.array(
600 601
                scope.find_var(w_param_attrs.name).get_tensor()
            )
602

603
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

    def test_prune_with_multi_devices(self):
        '''
        When training model with multi_devices, the pruned CompiledProgram should share same local scopes.
        This test the correctness.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        os.environ['CPU_NUM'] = str(2)
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
619 620 621 622 623 624 625 626 627 628 629
                (
                    x1,
                    x2,
                    y1,
                    y2,
                    label,
                    loss1,
                    loss2,
                    w1_param_attrs,
                    w2_param_attrs,
                ) = self.net2()
630
                adam_optimizer1 = fluid.optimizer.AdamOptimizer(
631 632
                    learning_rate=0.5
                )
633 634 635
                train1 = adam_optimizer1.minimize(loss1)
                cloned_program = program.clone()
                adam_optimizer2 = fluid.optimizer.AdamOptimizer(
636 637
                    learning_rate=0.5
                )
638 639 640 641 642
                train2 = adam_optimizer2.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                compiled_prog1 = fluid.CompiledProgram(
643 644 645 646
                    program
                ).with_data_parallel(
                    loss_name=loss1.name, places=[fluid.CPUPlace()] * 2
                )
647
                compiled_prog2 = fluid.CompiledProgram(
648 649 650 651
                    program
                ).with_data_parallel(
                    loss_name=loss2.name, places=[fluid.CPUPlace()] * 2
                )
652 653
                for i in range(10):
                    if i % 2 == 1:
654 655 656 657 658 659 660 661 662
                        res = exe.run(
                            compiled_prog1,
                            feed=[
                                {'x1': x_np[0:5, :], 'label': label_np[0:5, :]},
                                {'x1': x_np[5:, :], 'label': label_np[5:, :]},
                            ],
                            fetch_list=[loss1.name, train1],
                            use_prune=True,
                        )
663
                    else:
664 665 666 667 668 669
                        res = exe.run(
                            compiled_prog2,
                            feed={'x2': x_np, 'label': label_np},
                            fetch_list=[loss2.name, train2],
                            use_prune=True,
                        )
670
                weight1 = np.array(
671 672
                    scope.find_var(w1_param_attrs.name).get_tensor()
                )
673 674 675 676 677 678
        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            for i in range(10):
                if i % 2 == 1:
679 680 681 682 683 684
                    exe.run(
                        cloned_program,
                        feed={'x1': x_np, 'x2': x_np, 'label': label_np},
                        fetch_list=[loss1.name],
                        use_prune=False,
                    )
685
            weight2 = np.array(scope.find_var(w1_param_attrs.name).get_tensor())
686
        np.testing.assert_allclose(weight1, weight2, rtol=1e-05)
687 688 689

    def test_prune_program_with_tupe_in_fetch_list(self):
        '''
690
        If there are multiple optimizers in the program, we can run specific one by
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        pass the return of optimize.minimize() to fetch_list.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1 = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()

                train2 = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')

710 711 712 713 714 715
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False,
                )
716 717

                weight_without_prune = np.array(
718 719
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
720 721 722 723 724

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
725 726 727 728 729 730
            res = exe.run(
                program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name, train1],
                use_prune=True,
            )
731
            weight_with_prune = np.array(
732 733
                scope.find_var(w_param_attrs.name).get_tensor()
            )
734 735 736 737 738

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
739 740 741 742 743 744
            exe.run(
                cloned_program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name],
                use_prune=False,
            )
745
            weight_expected = np.array(
746 747
                scope.find_var(w_param_attrs.name).get_tensor()
            )
748

749
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
750 751 752 753 754 755 756 757 758 759 760 761
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

    def test_prune_program_partial_parameter_updated(self):
        """
        When running startup program, all parameters declared will be initialized.
        When running main program with prune=True, the pruned parameters will exist in scope and stay unchanged.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
762 763 764 765 766 767 768 769 770 771 772
                (
                    x1,
                    x2,
                    y1,
                    y2,
                    label,
                    loss1,
                    loss2,
                    w1_param_attrs,
                    w2_param_attrs,
                ) = self.net2()
773 774 775 776 777 778 779 780 781
                loss1.persistable = True
                loss2.persistable = True
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1 = sgd_optimizer.minimize(loss1)
                sgd_optimizer1 = fluid.optimizer.SGD(learning_rate=0.5)
                train2 = sgd_optimizer1.minimize(loss2)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight1_init = np.array(
782 783
                    scope.find_var(w1_param_attrs.name).get_tensor()
                )
784
                weight2_init = np.array(
785 786
                    scope.find_var(w2_param_attrs.name).get_tensor()
                )
787 788 789
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')

790 791 792 793 794 795
                res = exe.run(
                    program,
                    feed={'x1': x_np, 'label': label_np},
                    fetch_list=[loss1.name, train1],
                    use_prune=True,
                )
796 797 798 799 800
                self.assertIsNotNone(scope.find_var(w1_param_attrs.name))
                self.assertIsNotNone(scope.find_var(w2_param_attrs.name))
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight1 = np.array(
801 802
                    scope.find_var(w1_param_attrs.name).get_tensor()
                )
803
                weight2 = np.array(
804 805 806 807 808 809 810 811
                    scope.find_var(w2_param_attrs.name).get_tensor()
                )
                self.assertFalse(
                    np.array_equal(weight1_init, weight1)
                )  # weight changed
                np.testing.assert_array_equal(
                    weight2_init, weight2
                )  # weight2 unchanged
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

    def test_prune_override_use_prune(self):
        '''
        If optimize_ops in provided in the fetch_list, the argument use_prune is always override to True.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1, _ = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()
                train2, _ = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
832 833 834 835 836 837
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False,
                )
838 839

                weight_without_prune = np.array(
840 841
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
842 843 844 845 846

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
847 848 849 850 851
            res = exe.run(
                program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name, train1],
            )
852
            weight_with_prune = np.array(
853 854
                scope.find_var(w_param_attrs.name).get_tensor()
            )
855 856 857 858 859

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
860 861 862 863 864 865
            exe.run(
                cloned_program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name],
                use_prune=False,
            )
866
            weight_expected = np.array(
867 868
                scope.find_var(w_param_attrs.name).get_tensor()
            )
869

870
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
871 872
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

873 874 875 876 877 878 879 880 881 882 883
    def test_prune_feed_var_in_fetchlist_1(self):
        # the variable to be fed is not leaf
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
884 885
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
886 887
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
888 889 890 891 892 893
                res = exe.run(
                    program,
                    feed={y.name: x_np, 'label': label_np},
                    fetch_list=[y.name, loss1.name],
                    use_prune=True,
                )
894 895 896 897
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                self.assertIsNone(scope.find_var(x.name))
                weight = np.array(
898 899 900 901 902
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                np.testing.assert_array_equal(
                    weight_init, weight
                )  # weight unchanged
903 904 905 906 907 908 909 910 911 912 913 914

    def test_prune_feed_var_in_fetchlist_2(self):
        # the variable to be fed is leaf
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
915 916
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
917 918
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
919 920 921 922 923 924
                res = exe.run(
                    program,
                    feed={x.name: x_np, 'label': label_np},
                    fetch_list=[x.name, loss1.name],
                    use_prune=True,
                )
925 926 927
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
928 929 930 931 932
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                np.testing.assert_array_equal(
                    weight_init, weight
                )  # weight unchanged
933

934

935 936
if __name__ == '__main__':
    unittest.main()