test_kthvalue_op.py 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid


def cal_kthvalue(x, k, axis, keepdim=False):
    if axis < 0:
        axis = len(x.shape) + axis
    indices = np.argsort(x, axis=axis)
    value = np.sort(x, axis=axis)
    indices = indices.take(indices=k - 1, axis=axis)
    value = value.take(indices=k - 1, axis=axis)
    if keepdim:
        indices = np.expand_dims(indices, axis)
        value = np.expand_dims(value, axis)
    return value, indices


class TestKthvalueOp(OpTest):
    def init_args(self):
        self.k = 5
        self.axis = -1

    def setUp(self):
        self.op_type = "kthvalue"
42
        self.python_api = paddle.kthvalue
43 44 45 46 47
        self.dtype = np.float64
        self.input_data = np.random.random((2, 1, 2, 4, 10))
        self.init_args()
        self.inputs = {'X': self.input_data}
        self.attrs = {'k': self.k, 'axis': self.axis}
48 49 50
        output, indices = cal_kthvalue(
            self.input_data, k=self.k, axis=self.axis
        )
51 52 53 54
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
55
        self.check_output(check_eager=True)
56 57 58

    def test_check_grad(self):
        paddle.enable_static()
59
        self.check_grad(set(['X']), 'Out', check_eager=True)
60 61 62 63 64 65 66 67 68 69


class TestKthvalueOpWithKeepdim(OpTest):
    def init_args(self):
        self.k = 2
        self.axis = 1

    def setUp(self):
        self.init_args()
        self.op_type = "kthvalue"
70
        self.python_api = paddle.kthvalue
71 72 73 74
        self.dtype = np.float64
        self.input_data = np.random.random((1, 3, 2, 4, 10))
        self.inputs = {'X': self.input_data}
        self.attrs = {'k': self.k, 'axis': self.axis, 'keepdim': True}
75 76 77
        output, indices = cal_kthvalue(
            self.input_data, k=self.k, axis=self.axis, keepdim=True
        )
78 79 80 81
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
82
        self.check_output(check_eager=True)
83 84 85

    def test_check_grad(self):
        paddle.enable_static()
86
        self.check_grad(set(['X']), 'Out', check_eager=True)
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104


class TestKthvalueOpKernels(unittest.TestCase):
    def setUp(self):
        self.axises = [2, -1]

    def test_kthvalue_op(self):
        paddle.disable_static()

        def test_cpu_kernel():
            shape = (2, 128, 10)
            k = 2
            paddle.set_device('cpu')
            inputs = np.random.random(shape)
            tensor = paddle.to_tensor(inputs)
            for axis in self.axises:
                value_expect, indice_expect = cal_kthvalue(inputs, k, axis)
                v, inds = paddle.kthvalue(tensor, k, axis)
105
                np.testing.assert_allclose(v.numpy(), value_expect, rtol=1e-05)
106 107 108
                np.testing.assert_allclose(
                    inds.numpy(), indice_expect, rtol=1e-05
                )
109 110 111 112 113 114 115 116 117 118

        def test_gpu_kernel():
            shape = (2, 30, 250)
            k = 244
            paddle.set_device('gpu')
            inputs = np.random.random(shape)
            tensor = paddle.to_tensor(inputs)
            for axis in self.axises:
                value_expect, indice_expect = cal_kthvalue(inputs, k, axis)
                v, inds = paddle.kthvalue(tensor, k, axis)
119
                np.testing.assert_allclose(v.numpy(), value_expect, rtol=1e-05)
120 121 122
                np.testing.assert_allclose(
                    inds.numpy(), indice_expect, rtol=1e-05
                )
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

        test_cpu_kernel()
        if fluid.core.is_compiled_with_cuda():
            test_gpu_kernel()


class TestKthvalueOpWithNaN(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        self.x = paddle.uniform([2, 200, 10], dtype='float32')

    def test_errors(self):
        def test_nan_in_cpu_kernel():
            paddle.set_device('cpu')
            nan_position = 100
            self.x[0, nan_position, 2] = float('nan')
            v, inds = self.x.kthvalue(k=200, axis=1)
            self.assertTrue(np.isnan(v[0, 2].numpy()[0]))
            self.assertEqual(inds[0, 2].numpy()[0], nan_position)

        def test_nan_in_gpu_kernel():
            paddle.set_device('gpu')
            nan_position = 100
            self.x[0, nan_position, 2] = float('nan')
            v, inds = self.x.kthvalue(k=200, axis=1)
            self.assertTrue(np.isnan(v[0, 2].numpy()[0]))
            self.assertEqual(inds[0, 2].numpy()[0], nan_position)

        test_nan_in_cpu_kernel()
        if fluid.core.is_compiled_with_cuda():
            test_nan_in_gpu_kernel()


class TestKthvalueOpErrors(unittest.TestCase):
    def setUp(self):
        self.x = paddle.uniform([2, 10, 20, 25], dtype='float32')

    def test_errors(self):
        paddle.disable_static()

        def test_k_lowrange_error():
            self.x.kthvalue(k=0, axis=2)

        self.assertRaises(ValueError, test_k_lowrange_error)

        def test_k_uprange_error():
            self.x.kthvalue(k=500, axis=2)

        self.assertRaises(ValueError, test_k_uprange_error)

        def test_dim_range_error():
            self.x.kthvalue(k=10, axis=5)

        self.assertRaises(ValueError, test_dim_range_error)


class TestModeOpInStatic(unittest.TestCase):
    def setUp(self):
        np.random.seed(666)
        self.input_data = np.random.random((2, 20, 1, 2, 80)).astype(np.float64)
        self.k = 10

    def test_run_static(self):
        paddle.enable_static()
187 188 189 190 191 192
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            input_tensor = paddle.static.data(
                name="x", shape=[2, 20, 1, 2, 80], dtype="float64"
            )
193 194 195
            result = paddle.kthvalue(input_tensor, self.k, axis=1)
            expect_value = cal_kthvalue(self.input_data, self.k, axis=1)[0]
            exe = paddle.static.Executor(paddle.CPUPlace())
196 197 198
            paddle_result = exe.run(
                feed={"x": self.input_data}, fetch_list=[result]
            )[0]
199
            np.testing.assert_allclose(paddle_result, expect_value, rtol=1e-05)
200 201 202 203


if __name__ == '__main__':
    unittest.main()