test_cast_op.py 6.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16
import unittest
import numpy as np
17 18

import paddle
19
import paddle.fluid.core as core
20
import paddle.fluid as fluid
21
from paddle.fluid import Program, program_guard
Y
Yiqun Liu 已提交
22
from op_test import OpTest, convert_uint16_to_float, convert_float_to_uint16
H
hong 已提交
23
from paddle.fluid.framework import _test_eager_guard
24 25 26
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
Y
Yu Yang 已提交
27 28


Y
Yiqun Liu 已提交
29
class TestCastOpFp32ToFp64(OpTest):
Y
Yu Yang 已提交
30 31 32 33 34
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float64')}
        self.attrs = {
35
            'in_dtype': int(core.VarDesc.VarType.FP32),
36
            'out_dtype': int(core.VarDesc.VarType.FP64),
Y
Yu Yang 已提交
37 38 39 40 41 42 43 44 45 46
        }
        self.op_type = 'cast'

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
        self.check_grad(['X'], ['Out'])


Y
Yiqun Liu 已提交
47
class TestCastOpFp16ToFp32(OpTest):
K
Kexin Zhao 已提交
48 49
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
50
        self.inputs = {'X': ipt.astype('float16')}
K
Kexin Zhao 已提交
51 52 53
        self.outputs = {'Out': ipt.astype('float32')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP16),
54
            'out_dtype': int(core.VarDesc.VarType.FP32),
K
Kexin Zhao 已提交
55 56
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
57
        self.__class__.no_need_check_grad = True
K
Kexin Zhao 已提交
58 59

    def test_check_output(self):
K
Kexin Zhao 已提交
60
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
61 62


Y
Yiqun Liu 已提交
63
class TestCastOpFp32ToFp16(OpTest):
K
Kexin Zhao 已提交
64 65 66 67 68 69
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float16')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
70
            'out_dtype': int(core.VarDesc.VarType.FP16),
K
Kexin Zhao 已提交
71 72
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
73
        self.__class__.no_need_check_grad = True
K
Kexin Zhao 已提交
74 75

    def test_check_output(self):
K
Kexin Zhao 已提交
76
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
77 78


Y
Yiqun Liu 已提交
79 80 81 82 83 84 85
class TestCastOpBf16ToFp32(OpTest):
    def setUp(self):
        ipt = np.array(np.random.randint(10, size=[10, 10])).astype('uint16')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_uint16_to_float(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.BF16),
86
            'out_dtype': int(core.VarDesc.VarType.FP32),
Y
Yiqun Liu 已提交
87 88
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
89
        self.__class__.no_need_check_grad = True
Y
Yiqun Liu 已提交
90 91 92 93 94 95 96 97 98 99 100 101

    def test_check_output(self):
        self.check_output()


class TestCastOpFp32ToBf16(OpTest):
    def setUp(self):
        ipt = np.random.random(size=[10, 10]).astype('float32')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_float_to_uint16(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
102
            'out_dtype': int(core.VarDesc.VarType.BF16),
Y
Yiqun Liu 已提交
103 104
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
105
        self.__class__.no_need_check_grad = True
Y
Yiqun Liu 已提交
106 107 108 109 110

    def test_check_output(self):
        self.check_output()


111
class TestCastOpError(unittest.TestCase):
112 113 114
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of cast_op must be Variable.
115 116 117
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
118 119 120
            self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32')


H
hong 已提交
121 122 123 124 125 126 127
class TestCastOpEager(unittest.TestCase):
    def test_eager(self):
        with paddle.fluid.dygraph.base.guard():
            with _test_eager_guard():
                x = paddle.ones([2, 2], dtype="float16")
                x.stop_gradient = False
                out = paddle.cast(x, "float32")
128 129 130
                np.testing.assert_array_equal(
                    out, np.ones([2, 2]).astype('float32')
                )
H
hong 已提交
131
                out.backward()
132
                np.testing.assert_array_equal(x.gradient(), x.numpy())
H
hong 已提交
133 134 135
                self.assertTrue(x.gradient().dtype == np.float16)


136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
class TestCastDoubleGradCheck(unittest.TestCase):
    def cast_wrapper(self, x):
        return paddle.cast(x[0], 'float64')

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.cast(data, 'float64')
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

151 152 153
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
154
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
155 156 157
        gradient_checker.double_grad_check_for_dygraph(
            self.cast_wrapper, [data], out, x_init=[data_arr], place=place
        )
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestCastTripleGradCheck(unittest.TestCase):
    def cast_wrapper(self, x):
        return paddle.cast(x[0], 'float64')

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.cast(data, 'float64')
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

183 184 185
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
186
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
187 188 189
        gradient_checker.triple_grad_check_for_dygraph(
            self.cast_wrapper, [data], out, x_init=[data_arr], place=place
        )
190 191 192 193 194 195 196 197 198 199

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Y
Yu Yang 已提交
200
if __name__ == '__main__':
201
    paddle.enable_static()
Y
Yu Yang 已提交
202
    unittest.main()