reduce_kernel.h 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/unary.h"

namespace phi {
template <typename T, typename Context>
void SumRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DataType out_dtype,
                  DenseTensor* out);

template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const std::vector<int64_t>& dims,
                   bool keep_dim,
                   bool reduce_all,
                   DenseTensor* out);

template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const std::vector<int64_t>& dims,
                   bool keep_dim,
                   bool reduce_all,
                   DenseTensor* out);

template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DenseTensor* out);

template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DenseTensor* out);

template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DenseTensor* out);

template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DenseTensor* out);

template <typename T, typename Context>
void SumKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const std::vector<int64_t>& dims,
               DataType out_dtype,
               bool keep_dim,
               DenseTensor* out);

template <typename T, typename Context>
void MeanKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& dims,
                bool keep_dim,
                DenseTensor* out);

template <typename T, typename Context>
void ProdKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& dims,
                bool keep_dim,
                DenseTensor* out);

template <typename T, typename Context>
void MaxKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const std::vector<int64_t>& dims,
               bool keep_dim,
               DenseTensor* out);

template <typename T, typename Context>
void MinKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const std::vector<int64_t>& dims,
               bool keep_dim,
               DenseTensor* out);

template <typename T, typename Context>
void AnyKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const std::vector<int64_t>& dims,
               bool keep_dim,
               DenseTensor* out);

template <typename T, typename Context>
void AllKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const std::vector<int64_t>& dims,
               bool keep_dim,
               DenseTensor* out);

template <typename T, typename Context>
DenseTensor Mean(const Context& dev_ctx,
                 const DenseTensor& x,
                 const std::vector<int64_t>& axis,
                 bool keep_dim) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  SumRawInferMeta(x, axis, keep_dim, false, x.dtype(), &meta_out);
  MeanKernel<T, Context>(dev_ctx, x, axis, keep_dim, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor Sum(const Context& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& axis,
                DataType dtype,
                bool keep_dim) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  SumInferMeta(x, axis, dtype, keep_dim, &meta_out);
  SumKernel<T, Context>(dev_ctx, x, axis, dtype, keep_dim, &dense_out);
  return dense_out;
}

}  // namespace phi