functional.py 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from librosa(https://github.com/librosa/librosa)
import math
16
from typing import Optional, Union
17 18 19 20 21

import paddle
from paddle import Tensor


22 23 24
def hz_to_mel(
    freq: Union[Tensor, float], htk: bool = False
) -> Union[Tensor, float]:
25 26 27 28 29 30 31 32
    """Convert Hz to Mels.

    Args:
        freq (Union[Tensor, float]): The input tensor with arbitrary shape.
        htk (bool, optional): Use htk scaling. Defaults to False.

    Returns:
        Union[Tensor, float]: Frequency in mels.
Y
YangZhou 已提交
33 34 35 36 37 38 39 40 41 42

    Examples:
        .. code-block:: python

            import paddle

            val = 3.0
            htk_flag = True
            mel_paddle_tensor = paddle.audio.functional.hz_to_mel(
                paddle.to_tensor(val), htk_flag)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    """

    if htk:
        if isinstance(freq, Tensor):
            return 2595.0 * paddle.log10(1.0 + freq / 700.0)
        else:
            return 2595.0 * math.log10(1.0 + freq / 700.0)

    # Fill in the linear part
    f_min = 0.0
    f_sp = 200.0 / 3

    mels = (freq - f_min) / f_sp

    # Fill in the log-scale part

    min_log_hz = 1000.0  # beginning of log region (Hz)
    min_log_mel = (min_log_hz - f_min) / f_sp  # same (Mels)
    logstep = math.log(6.4) / 27.0  # step size for log region

    if isinstance(freq, Tensor):
64 65 66
        target = (
            min_log_mel + paddle.log(freq / min_log_hz + 1e-10) / logstep
        )  # prevent nan with 1e-10
67 68
        mask = (freq > min_log_hz).astype(freq.dtype)
        mels = target * mask + mels * (
69 70
            1 - mask
        )  # will replace by masked_fill OP in future
71 72 73 74 75 76 77
    else:
        if freq >= min_log_hz:
            mels = min_log_mel + math.log(freq / min_log_hz + 1e-10) / logstep

    return mels


78 79 80
def mel_to_hz(
    mel: Union[float, Tensor], htk: bool = False
) -> Union[float, Tensor]:
81 82 83 84 85 86 87 88
    """Convert mel bin numbers to frequencies.

    Args:
        mel (Union[float, Tensor]): The mel frequency represented as a tensor with arbitrary shape.
        htk (bool, optional): Use htk scaling. Defaults to False.

    Returns:
        Union[float, Tensor]: Frequencies in Hz.
Y
YangZhou 已提交
89 90 91 92 93 94 95 96 97 98 99

    Examples:
        .. code-block:: python

            import paddle

            val = 3.0
            htk_flag = True
            mel_paddle_tensor = paddle.audio.functional.mel_to_hz(
                paddle.to_tensor(val), htk_flag)

100 101
    """
    if htk:
102
        return 700.0 * (10.0 ** (mel / 2595.0) - 1.0)
103 104 105 106 107 108 109 110 111 112 113 114

    f_min = 0.0
    f_sp = 200.0 / 3
    freqs = f_min + f_sp * mel
    # And now the nonlinear scale
    min_log_hz = 1000.0  # beginning of log region (Hz)
    min_log_mel = (min_log_hz - f_min) / f_sp  # same (Mels)
    logstep = math.log(6.4) / 27.0  # step size for log region
    if isinstance(mel, Tensor):
        target = min_log_hz * paddle.exp(logstep * (mel - min_log_mel))
        mask = (mel > min_log_mel).astype(mel.dtype)
        freqs = target * mask + freqs * (
115 116
            1 - mask
        )  # will replace by masked_fill OP in future
117 118 119 120 121 122
    else:
        if mel >= min_log_mel:
            freqs = min_log_hz * math.exp(logstep * (mel - min_log_mel))
    return freqs


123 124 125 126 127 128 129
def mel_frequencies(
    n_mels: int = 64,
    f_min: float = 0.0,
    f_max: float = 11025.0,
    htk: bool = False,
    dtype: str = 'float32',
) -> Tensor:
130 131 132 133 134 135 136 137 138 139 140
    """Compute mel frequencies.

    Args:
        n_mels (int, optional): Number of mel bins. Defaults to 64.
        f_min (float, optional): Minimum frequency in Hz. Defaults to 0.0.
        fmax (float, optional): Maximum frequency in Hz. Defaults to 11025.0.
        htk (bool, optional): Use htk scaling. Defaults to False.
        dtype (str, optional): The data type of the return frequencies. Defaults to 'float32'.

    Returns:
        Tensor: Tensor of n_mels frequencies in Hz with shape `(n_mels,)`.
Y
YangZhou 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153

    Examples:
        .. code-block:: python

            import paddle

            n_mels = 64
            f_min = 0.5
            f_max = 10000
            htk_flag = True

            paddle_mel_freq = paddle.audio.functional.mel_frequencies(
                n_mels, f_min, f_max, htk_flag, 'float64')
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    """
    # 'Center freqs' of mel bands - uniformly spaced between limits
    min_mel = hz_to_mel(f_min, htk=htk)
    max_mel = hz_to_mel(f_max, htk=htk)
    mels = paddle.linspace(min_mel, max_mel, n_mels, dtype=dtype)
    freqs = mel_to_hz(mels, htk=htk)
    return freqs


def fft_frequencies(sr: int, n_fft: int, dtype: str = 'float32') -> Tensor:
    """Compute fourier frequencies.

    Args:
        sr (int): Sample rate.
        n_fft (int): Number of fft bins.
        dtype (str, optional): The data type of the return frequencies. Defaults to 'float32'.

    Returns:
        Tensor: FFT frequencies in Hz with shape `(n_fft//2 + 1,)`.
Y
YangZhou 已提交
173 174 175 176 177 178 179 180 181

    Examples:
        .. code-block:: python

            import paddle

            sr = 16000
            n_fft = 128
            fft_freq = paddle.audio.functional.fft_frequencies(sr, n_fft)
182 183 184 185
    """
    return paddle.linspace(0, float(sr) / 2, int(1 + n_fft // 2), dtype=dtype)


186 187 188 189 190 191 192 193 194 195
def compute_fbank_matrix(
    sr: int,
    n_fft: int,
    n_mels: int = 64,
    f_min: float = 0.0,
    f_max: Optional[float] = None,
    htk: bool = False,
    norm: Union[str, float] = 'slaney',
    dtype: str = 'float32',
) -> Tensor:
196 197 198 199 200 201 202 203 204 205 206 207 208 209
    """Compute fbank matrix.

    Args:
        sr (int): Sample rate.
        n_fft (int): Number of fft bins.
        n_mels (int, optional): Number of mel bins. Defaults to 64.
        f_min (float, optional): Minimum frequency in Hz. Defaults to 0.0.
        f_max (Optional[float], optional): Maximum frequency in Hz. Defaults to None.
        htk (bool, optional): Use htk scaling. Defaults to False.
        norm (Union[str, float], optional): Type of normalization. Defaults to 'slaney'.
        dtype (str, optional): The data type of the return matrix. Defaults to 'float32'.

    Returns:
        Tensor: Mel transform matrix with shape `(n_mels, n_fft//2 + 1)`.
Y
YangZhou 已提交
210 211 212 213 214 215 216 217 218

    Examples:
        .. code-block:: python

            import paddle

            n_mfcc = 23
            n_mels = 51
            paddle_dct = paddle.audio.functional.create_dct(n_mfcc, n_mels)
219 220 221 222 223 224 225 226 227 228 229 230
    """

    if f_max is None:
        f_max = float(sr) / 2

    # Initialize the weights
    weights = paddle.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)

    # Center freqs of each FFT bin
    fftfreqs = fft_frequencies(sr=sr, n_fft=n_fft, dtype=dtype)

    # 'Center freqs' of mel bands - uniformly spaced between limits
231 232 233
    mel_f = mel_frequencies(
        n_mels + 2, f_min=f_min, f_max=f_max, htk=htk, dtype=dtype
    )
234

235
    fdiff = mel_f[1:] - mel_f[:-1]  # np.diff(mel_f)
236
    ramps = mel_f.unsqueeze(1) - fftfreqs.unsqueeze(0)
237
    # ramps = np.subtract.outer(mel_f, fftfreqs)
238 239 240 241 242 243 244

    for i in range(n_mels):
        # lower and upper slopes for all bins
        lower = -ramps[i] / fdiff[i]
        upper = ramps[i + 2] / fdiff[i + 1]

        # .. then intersect them with each other and zero
245 246 247
        weights[i] = paddle.maximum(
            paddle.zeros_like(lower), paddle.minimum(lower, upper)
        )
248 249 250

    # Slaney-style mel is scaled to be approx constant energy per channel
    if norm == 'slaney':
251
        enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
252
        weights *= enorm.unsqueeze(1)
253
    elif isinstance(norm, (int, float)):
254 255 256 257 258
        weights = paddle.nn.functional.normalize(weights, p=norm, axis=-1)

    return weights


259 260 261 262 263 264
def power_to_db(
    spect: Tensor,
    ref_value: float = 1.0,
    amin: float = 1e-10,
    top_db: Optional[float] = 80.0,
) -> Tensor:
265 266 267 268 269 270 271 272 273 274
    """Convert a power spectrogram (amplitude squared) to decibel (dB) units. The function computes the scaling `10 * log10(x / ref)` in a numerically stable way.

    Args:
        spect (Tensor): STFT power spectrogram.
        ref_value (float, optional): The reference value. If smaller than 1.0, the db level of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. Defaults to 1.0.
        amin (float, optional): Minimum threshold. Defaults to 1e-10.
        top_db (Optional[float], optional): Threshold the output at `top_db` below the peak. Defaults to None.

    Returns:
        Tensor: Power spectrogram in db scale.
Y
YangZhou 已提交
275 276 277 278 279 280 281 282 283

    Examples:
        .. code-block:: python

            import paddle

            val = 3.0
            decibel_paddle = paddle.audio.functional.power_to_db(
                paddle.to_tensor(val))
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    """
    if amin <= 0:
        raise Exception("amin must be strictly positive")

    if ref_value <= 0:
        raise Exception("ref_value must be strictly positive")

    ones = paddle.ones_like(spect)
    log_spec = 10.0 * paddle.log10(paddle.maximum(ones * amin, spect))
    log_spec -= 10.0 * math.log10(max(ref_value, amin))

    if top_db is not None:
        if top_db < 0:
            raise Exception("top_db must be non-negative")
        log_spec = paddle.maximum(log_spec, ones * (log_spec.max() - top_db))

    return log_spec


303 304 305 306 307 308
def create_dct(
    n_mfcc: int,
    n_mels: int,
    norm: Optional[str] = 'ortho',
    dtype: str = 'float32',
) -> Tensor:
309 310 311
    """Create a discrete cosine transform(DCT) matrix.

    Args:
312
        n_mfcc (int): Number of mel frequency cepstral coefficients.
313 314 315 316 317 318
        n_mels (int): Number of mel filterbanks.
        norm (Optional[str], optional): Normalizaiton type. Defaults to 'ortho'.
        dtype (str, optional): The data type of the return matrix. Defaults to 'float32'.

    Returns:
        Tensor: The DCT matrix with shape `(n_mels, n_mfcc)`.
Y
YangZhou 已提交
319 320 321 322 323 324 325 326

    Examples:
        .. code-block:: python

            import paddle
            n_mfcc = 23
            n_mels = 257
            dct = paddle.audio.functional.create_dct(n_mfcc, n_mels)
327 328 329
    """
    n = paddle.arange(n_mels, dtype=dtype)
    k = paddle.arange(n_mfcc, dtype=dtype).unsqueeze(1)
330 331 332
    dct = paddle.cos(
        math.pi / float(n_mels) * (n + 0.5) * k
    )  # size (n_mfcc, n_mels)
333 334 335 336 337 338 339
    if norm is None:
        dct *= 2.0
    else:
        assert norm == "ortho"
        dct[0] *= 1.0 / math.sqrt(2.0)
        dct *= math.sqrt(2.0 / float(n_mels))
    return dct.T