ipu_utils.h 7.7 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <popart/ndarraywrapper.hpp>
#include <popart/tensordata.hpp>
#include <popart/tensorinfo.hpp>
A
Allen Guo 已提交
20
#include <popart/vendored/any.hpp>
J
jianghaicheng 已提交
21

A
Allen Guo 已提交
22
#include "paddle/fluid/framework/convert_utils.h"
A
Allen Guo 已提交
23
#include "paddle/fluid/framework/ir/graph.h"
J
jianghaicheng 已提交
24
#include "paddle/fluid/framework/lod_tensor.h"
A
Allen Guo 已提交
25 26 27
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/float16.h"
J
jianghaicheng 已提交
28 29 30 31 32

namespace paddle {
namespace platform {
namespace ipu {

A
Allen Guo 已提交
33 34 35 36 37 38 39 40 41
using float16 = platform::float16;
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using Scope = framework::Scope;
using OpDesc = framework::OpDesc;
using Graph = framework::ir::Graph;
using Node = framework::ir::Node;
using BlockDesc = framework::BlockDesc;

J
jianghaicheng 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
// onnx dtype
// https://github.com/onnx/onnx/blob/master/onnx/onnx-ml.proto3
enum ONNXDataType : int {
  UNDEFINED = 0,
  FLOAT = 1,
  UINT8 = 2,
  INT8 = 3,
  UINT16 = 4,
  INT16 = 5,
  INT32 = 6,
  INT64 = 7,
  STRING = 8,
  BOOL = 9,
  FLOAT16 = 10,
  DOUBLE = 11,
  UINT32 = 12,
  UINT64 = 13,
  COMPLEX64 = 14,
  COMPLEX128 = 15,
  BFLOAT16 = 16
};

class PaddleIArray final : public popart::IArray {
 public:
A
Allen Guo 已提交
66 67
  explicit PaddleIArray(const Tensor* tensor) {
    tensor_.ShareDataWith(*tensor);
J
jianghaicheng 已提交
68 69 70 71 72 73
    for (int i = 0; i < tensor->dims().size(); ++i) {
      shape_.push_back(tensor->dims().at(i));
    }
  }

 public:
A
Allen Guo 已提交
74
  void* data();
J
jianghaicheng 已提交
75 76 77 78 79 80 81
  popart::DataType dataType() const;
  std::size_t rank() const;
  int64_t dim(size_t index) const;
  std::size_t nelms() const;
  const popart::Shape shape() const;

 private:
A
Allen Guo 已提交
82
  Tensor tensor_;
J
jianghaicheng 已提交
83 84 85 86
  std::vector<int64_t> shape_;
};

popart::DataType VarType2PopartType(const framework::proto::VarType::Type type);
A
Allen Guo 已提交
87 88
popart::DataType PdDataType2PopartType(
    const paddle::experimental::DataType type);
J
jianghaicheng 已提交
89 90 91 92 93
framework::proto::VarType::Type PopartType2VarType(const popart::DataType type);
popart::DataType OnnxDtype2PopartType(const int type);
bool GetBoolEnv(std::string str);

template <typename T>
A
Allen Guo 已提交
94
std::unique_ptr<popart::NDArrayWrapper<T>> Tensor2IArray(const Tensor& tensor) {
A
Allen Guo 已提交
95
  auto dtype = PdDataType2PopartType(tensor.dtype());
J
jianghaicheng 已提交
96 97 98 99 100 101 102
  auto shape = std::vector<int64_t>();
  for (size_t i = 0; i < tensor.dims().size(); ++i) {
    shape.push_back(tensor.dims().at(i));
  }
  popart::TensorInfo tensor_info(dtype, shape);

  return std::make_unique<popart::NDArrayWrapper<T>>(
A
Allen Guo 已提交
103
      reinterpret_cast<T*>(tensor.data()), tensor_info);
J
jianghaicheng 已提交
104 105 106 107
}

template <typename T>
std::unique_ptr<popart::NDArrayWrapper<T>> LoDTensor2IArray(
A
Allen Guo 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    LoDTensor const& lod_tensor) {
  if (lod_tensor.lod().size() == 0) {
    return Tensor2IArray<T>(lod_tensor);
  } else {
    PADDLE_THROW(
        platform::errors::Unimplemented("LoDTensor2IArray is Unimplemented"));
  }
}

template <typename T>
T GetSingleVarFromScope(const Scope* scope, const std::string& var_name) {
  auto var = scope->GetVar(var_name);
  auto tensor = var->Get<framework::LoDTensor>();
  // check dtype is  ?
  return tensor.data<T>()[0];
J
jianghaicheng 已提交
123 124
}

A
Allen Guo 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
struct CustomOpAttrVisitor : public boost::static_visitor<void> {
  explicit CustomOpAttrVisitor(std::map<std::string, popart::any>* attr,
                               const std::string& attr_name)
      : attrs_(attr), attr_name_(attr_name) {}
  mutable std::map<std::string, popart::any>* attrs_;
  std::string attr_name_;

  void operator()(int v) const { attrs_->emplace(attr_name_, v); }
  void operator()(float v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::string& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<int>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<float>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<std::string>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(bool v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::vector<bool>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(BlockDesc* desc) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `BlockDesc` type."));
  }
  void operator()(const std::vector<BlockDesc*>& v) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `BlockDesc` type."));
  }
  void operator()(int64_t v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::vector<int64_t>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<double>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(boost::blank) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `boost::blank` type."));
  }
};

struct IpuCustomOpIdentifier {
  IpuCustomOpIdentifier(const std::string& _paddle_op,
                        const std::string& _popart_op,
                        const std::string& _domain, unsigned int _version)
      : paddle_op(_paddle_op), popart_op(_domain, _popart_op, _version) {}

  std::string repr() {
    std::ostringstream os;
    os << "paddle_op: " << paddle_op << ", domain: " << popart_op.domain
       << ", type: " << popart_op.type << ", version: " << popart_op.version;
    return os.str();
  }

  std::string paddle_op;
  popart::OperatorIdentifier popart_op;
};

struct ConstantOpAttrVisitor : public boost::static_visitor<void> {
  explicit ConstantOpAttrVisitor(framework::LoDTensor* tensor,
                                 framework::proto::VarType::Type dtype)
      : tensor_(tensor), dtype_(dtype) {}
  framework::LoDTensor* tensor_;
  framework::proto::VarType::Type dtype_;

  void operator()(const std::vector<int>& vec) const {
    framework::TensorFromVector<int>(vec, tensor_);
  }
  void operator()(const std::vector<float>& vec) const {
    if (dtype_ == framework::proto::VarType::FP16) {
      std::vector<float16> vec_fp16;
      std::transform(vec.begin(), vec.end(), std::back_inserter(vec_fp16),
                     [](float f) -> float16 { return float16(f); });
      framework::TensorFromVector<float16>(vec_fp16, tensor_);
    } else {
      framework::TensorFromVector<float>(vec, tensor_);
    }
  }
  void operator()(const std::vector<bool>& vec) const {
    framework::TensorFromVector<bool>(vec, tensor_);
  }
  void operator()(const std::vector<int64_t>& vec) const {
    framework::TensorFromVector<int64_t>(vec, tensor_);
  }
  void operator()(const std::vector<double>& vec) const {
    framework::TensorFromVector<double>(vec, tensor_);
  }
  void RaiseError() const {
    PADDLE_THROW(
        platform::errors::InvalidArgument("Constant value must be a vector"));
  }
  void operator()(int v) const { RaiseError(); }
  void operator()(float v) const { RaiseError(); }
  void operator()(const std::string& v) const { RaiseError(); }
  void operator()(const std::vector<std::string>& v) const { RaiseError(); }
  void operator()(bool v) const { RaiseError(); }
  void operator()(BlockDesc* desc) const { RaiseError(); }
  void operator()(const std::vector<BlockDesc*>& v) const { RaiseError(); }
  void operator()(int64_t v) const { RaiseError(); }
  void operator()(boost::blank) const { RaiseError(); }
};

int RequestIpus(const int num_ipus);

J
jianghaicheng 已提交
234 235 236
}  // namespace ipu
}  // namespace platform
}  // namespace paddle