db_lstm.py 6.3 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import os
import sys
from paddle.trainer_config_helpers import *

#file paths
Z
zhangjinchao01 已提交
21 22
word_dict_file = './data/wordDict.txt'
label_dict_file = './data/targetDict.txt'
Y
Yu Yang 已提交
23
predicate_file = './data/verbDict.txt'
Z
zhangjinchao01 已提交
24 25 26 27 28 29 30 31 32 33
train_list_file = './data/train.list'
test_list_file = './data/test.list'

is_test = get_config_arg('is_test', bool, False)
is_predict = get_config_arg('is_predict', bool, False)

if not is_predict:
    #load dictionaries
    word_dict = dict()
    label_dict = dict()
Z
zhangjinchao01 已提交
34
    predicate_dict = dict()
Z
zhangjinchao01 已提交
35
    with open(word_dict_file, 'r') as f_word, \
Z
zhangjinchao01 已提交
36 37
         open(label_dict_file, 'r') as f_label, \
         open(predicate_file, 'r') as f_pre:
Z
zhangjinchao01 已提交
38 39 40 41 42 43 44 45
        for i, line in enumerate(f_word):
            w = line.strip()
            word_dict[w] = i

        for i, line in enumerate(f_label):
            w = line.strip()
            label_dict[w] = i

Z
zhangjinchao01 已提交
46 47 48 49
        for i, line in enumerate(f_pre):
            w = line.strip()
            predicate_dict[w] = i

Z
zhangjinchao01 已提交
50
    if is_test:
51
        train_list_file = None
Z
zhangjinchao01 已提交
52 53 54 55 56 57 58

    #define data provider
    define_py_data_sources2(
        train_list=train_list_file,
        test_list=test_list_file,
        module='dataprovider',
        obj='process',
Y
Yu Yang 已提交
59 60 61 62 63
        args={
            'word_dict': word_dict,
            'label_dict': label_dict,
            'predicate_dict': predicate_dict
        })
Z
zhangjinchao01 已提交
64 65 66

    word_dict_len = len(word_dict)
    label_dict_len = len(label_dict)
Z
zhangjinchao01 已提交
67
    pred_len = len(predicate_dict)
Z
zhangjinchao01 已提交
68 69 70 71

else:
    word_dict_len = get_config_arg('dict_len', int)
    label_dict_len = get_config_arg('label_len', int)
Z
zhangjinchao01 已提交
72
    pred_len = get_config_arg('pred_len', int)
Z
zhangjinchao01 已提交
73

Z
zhangjinchao01 已提交
74
############################## Hyper-parameters ##################################
Z
zhangjinchao01 已提交
75 76 77
mark_dict_len = 2
word_dim = 32
mark_dim = 5
Z
zhangjinchao01 已提交
78
hidden_dim = 512
Z
zhangjinchao01 已提交
79
depth = 8
Z
zhangjinchao01 已提交
80 81 82

########################### Optimizer #######################################

Z
zhangjinchao01 已提交
83 84
settings(
    batch_size=150,
Z
zhangjinchao01 已提交
85 86
    learning_method=MomentumOptimizer(momentum=0),
    learning_rate=2e-2,
Z
zhangjinchao01 已提交
87
    regularization=L2Regularization(8e-4),
Z
zhangjinchao01 已提交
88
    is_async=False,
Y
Yu Yang 已提交
89 90
    model_average=ModelAverage(
        average_window=0.5, max_average_window=10000), )
Z
zhangjinchao01 已提交
91 92 93

####################################### network ##############################
#8 features and 1 target
Z
zhangjinchao01 已提交
94
word = data_layer(name='word_data', size=word_dict_len)
Z
zhangjinchao01 已提交
95 96 97
predicate = data_layer(name='verb_data', size=pred_len)

ctx_n2 = data_layer(name='ctx_n2_data', size=word_dict_len)
Z
zhangjinchao01 已提交
98 99 100
ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len)
ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len)
ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len)
Z
zhangjinchao01 已提交
101
ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len)
Z
zhangjinchao01 已提交
102 103 104 105 106
mark = data_layer(name='mark_data', size=mark_dict_len)

if not is_predict:
    target = data_layer(name='target', size=label_dict_len)

Y
Yu Yang 已提交
107
default_std = 1 / math.sqrt(hidden_dim) / 3.0
Z
zhangjinchao01 已提交
108 109 110

emb_para = ParameterAttribute(name='emb', initial_std=0., learning_rate=0.)
std_0 = ParameterAttribute(initial_std=0.)
Y
Yu Yang 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
std_default = ParameterAttribute(initial_std=default_std)

predicate_embedding = embedding_layer(
    size=word_dim,
    input=predicate,
    param_attr=ParameterAttribute(
        name='vemb', initial_std=default_std))
mark_embedding = embedding_layer(
    name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0)

word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
    embedding_layer(
        size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
Z
to loop  
zhangjcqq 已提交
126 127
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
Z
zhangjinchao01 已提交
128 129

hidden_0 = mixed_layer(
Z
zhangjinchao01 已提交
130
    name='hidden0',
Z
zhangjinchao01 已提交
131
    size=hidden_dim,
Z
zhangjinchao01 已提交
132
    bias_attr=std_default,
Y
Yu Yang 已提交
133 134 135 136
    input=[
        full_matrix_projection(
            input=emb, param_attr=std_default) for emb in emb_layers
    ])
Z
zhangjinchao01 已提交
137 138 139

mix_hidden_lr = 1e-3
lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0)
Y
Yu Yang 已提交
140 141 142 143 144 145 146 147 148 149 150
hidden_para_attr = ParameterAttribute(
    initial_std=default_std, learning_rate=mix_hidden_lr)

lstm_0 = lstmemory(
    name='lstm0',
    input=hidden_0,
    act=ReluActivation(),
    gate_act=SigmoidActivation(),
    state_act=SigmoidActivation(),
    bias_attr=std_0,
    param_attr=lstm_para_attr)
Z
zhangjinchao01 已提交
151 152 153 154 155 156

#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]

for i in range(1, depth):

Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    mix_hidden = mixed_layer(
        name='hidden' + str(i),
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            full_matrix_projection(
                input=input_tmp[0], param_attr=hidden_para_attr),
            full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
        ])

    lstm = lstmemory(
        name='lstm' + str(i),
        input=mix_hidden,
        act=ReluActivation(),
        gate_act=SigmoidActivation(),
        state_act=SigmoidActivation(),
        reverse=((i % 2) == 1),
        bias_attr=std_0,
        param_attr=lstm_para_attr)
Z
zhangjinchao01 已提交
177 178 179

    input_tmp = [mix_hidden, lstm]

Y
Yu Yang 已提交
180 181 182 183 184 185 186 187 188 189
feature_out = mixed_layer(
    name='output',
    size=label_dict_len,
    bias_attr=std_default,
    input=[
        full_matrix_projection(
            input=input_tmp[0], param_attr=hidden_para_attr),
        full_matrix_projection(
            input=input_tmp[1], param_attr=lstm_para_attr)
    ], )
Z
zhangjinchao01 已提交
190 191

if not is_predict:
Y
Yu Yang 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205
    crf_l = crf_layer(
        name='crf',
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=ParameterAttribute(
            name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr))

    crf_dec_l = crf_decoding_layer(
        name='crf_dec_l',
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=ParameterAttribute(name='crfw'))
Z
zhangjinchao01 已提交
206 207

    eval = sum_evaluator(input=crf_dec_l)
Y
Yu Yang 已提交
208

Z
zhangjinchao01 已提交
209 210
    outputs(crf_l)

Z
zhangjinchao01 已提交
211
else:
Y
Yu Yang 已提交
212 213 214 215 216
    crf_dec_l = crf_decoding_layer(
        name='crf_dec_l',
        size=label_dict_len,
        input=feature_out,
        param_attr=ParameterAttribute(name='crfw'))
Z
zhangjinchao01 已提交
217 218

    outputs(crf_dec_l)