nce_op.cc 13.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

W
wanghaoshuang 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

W
wanghaoshuang 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

W
wanghaoshuang 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/nce_op.h"
W
wanghaoshuang 已提交
16

17
#include <memory>
18
#include <string>
Y
Yang Yang 已提交
19 20
#include <vector>

W
wanghaoshuang 已提交
21 22 23 24 25 26 27 28 29
namespace paddle {
namespace operators {

using framework::Tensor;

class NCEOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

30
  void InferShape(framework::InferShapeContext *ctx) const override {
31 32 33 34 35 36
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true);
    PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true);
    PADDLE_ENFORCE_EQ(ctx->HasInput("Weight"), true);
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Cost"), true);
    PADDLE_ENFORCE_EQ(ctx->HasOutput("SampleLogits"), true);
    PADDLE_ENFORCE_EQ(ctx->HasOutput("SampleLabels"), true);
W
wanghaoshuang 已提交
37

W
wanghaoshuang 已提交
38
    auto x_dims = ctx->GetInputDim("Input");
W
wanghaoshuang 已提交
39
    auto label_dims = ctx->GetInputDim("Label");
40
    if (ctx->IsRuntime() || (x_dims[0] > 0 && label_dims[0] > 0)) {
41 42 43 44 45 46 47
      PADDLE_ENFORCE_EQ(
          x_dims[0], label_dims[0],
          "ShapeError: the first dimension of Input(Input) and Input(Label) "
          "should be equal in runtime. But received: Input(Input)'s shape = "
          "[%s] with 1st dim =  %d, Input(Label)'s shape = [%s] with 1st "
          "dim = %d.",
          x_dims, x_dims[0], label_dims, label_dims[0]);
48
    }
W
wanghaoshuang 已提交
49 50
    int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1;
    if (ctx->HasInput("Bias")) {
51 52 53 54 55 56 57
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Weight")[0], ctx->GetInputDim("Bias")[0],
          "ShapeError: the first dimension of Input(Weight) and Input(Bias) "
          "should be equal. But received: Input(Weight)'s shape = [%s] with "
          "1st dim = %d, Input(Bias)'s shape = [%s] with 1st dim = %d.",
          ctx->GetInputDim("Weight"), ctx->GetInputDim("Weight")[0],
          ctx->GetInputDim("Bias"), ctx->GetInputDim("Bias")[0]);
W
wanghaoshuang 已提交
58
    }
W
wanghaoshuang 已提交
59 60
    auto num_neg_samples = ctx->Attrs().Get<int>("num_neg_samples");
    auto num_total_classes = ctx->Attrs().Get<int>("num_total_classes");
W
wanghaoshuang 已提交
61 62
    std::vector<int> custom_neg_classes =
        ctx->Attrs().Get<std::vector<int>>("custom_neg_classes");
63 64 65 66 67 68 69
    PADDLE_ENFORCE_EQ(
        num_total_classes, ctx->GetInputDim("Weight")[0],
        "ShapeError: the number of total classes should be equal to the first "
        "dimension of Input(Weight). But received: Attr(num_total_classes) = "
        "%d, Input(Weight)'s shape = [%s] with 1st dim = %d.",
        num_total_classes, ctx->GetInputDim("Weight"),
        ctx->GetInputDim("Weight")[0]);
W
wanghaoshuang 已提交
70
    if (custom_neg_classes.size() > 0) {
71 72 73 74 75 76
      PADDLE_ENFORCE_EQ(
          custom_neg_classes.size(), static_cast<size_t>(num_neg_samples),
          "ShapeError: the size of Attr(custom_neg_classes) should be equal "
          "to the number of negative samples. But received: "
          "custom_neg_classes.size() = %d, num_neg_samples = %d.",
          custom_neg_classes.size(), num_neg_samples);
W
wanghaoshuang 已提交
77
    }
W
wanghaoshuang 已提交
78
    // set dims of output(Out)
W
wanghaoshuang 已提交
79
    std::vector<int64_t> out_dims;
W
wanghaoshuang 已提交
80
    out_dims.push_back(x_dims[0]);
W
wanghaoshuang 已提交
81
    out_dims.push_back(1);
W
wanghaoshuang 已提交
82
    ctx->SetOutputDim("Cost", framework::make_ddim(out_dims));
W
wanghaoshuang 已提交
83 84

    // set dims of output(SampleOut)
W
wanghaoshuang 已提交
85
    std::vector<int64_t> sample_out_dims;
W
wanghaoshuang 已提交
86
    sample_out_dims.push_back(x_dims[0]);
87 88
    sample_out_dims.push_back(
        (num_true_classes == -1) ? -1 : (num_neg_samples + num_true_classes));
W
wanghaoshuang 已提交
89 90 91
    ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims));
    ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims));
  }
W
wanghaoshuang 已提交
92 93

 protected:
94
  framework::OpKernelType GetExpectedKernelType(
95
      const framework::ExecutionContext &ctx) const override {
96 97 98
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        platform::CPUPlace());
W
wanghaoshuang 已提交
99
  }
W
wanghaoshuang 已提交
100 101 102 103
};

class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
104
  void Make() override {
W
wanghaoshuang 已提交
105
    AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim].");
W
wanghaoshuang 已提交
106 107 108 109 110 111 112 113
    AddInput(
        "Label",
        "(Tensor) A tensor of shape [batch_size, num_true_class]. "
        "'num_true_class' is the number of target classes in each sample."
        "The number of target classes per sample should be same. "
        "If you have a variable number of target classes, "
        "you can pad them out to a constant number by either repeating them"
        " or by padding with an otherwise unused class.)");
W
wanghaoshuang 已提交
114 115 116
    AddInput("Weight",
             "(Tensor) A tensor of shape [num_class, dim]. 'num_class' is the "
             "total number of class.");
W
wanghaoshuang 已提交
117 118 119 120
    AddInput(
        "Bias",
        "(Tensor) A tensor of shape [num_class, 1]. 'num_class' is the total "
        "number of class. It is a dispensable input.")
W
wanghaoshuang 已提交
121 122
        .AsDispensable();
    AddInput("SampleWeight",
W
wanghaoshuang 已提交
123
             "(Tensor) A tensor of shape [batch_size, 1] storing a weight for "
W
wanghaoshuang 已提交
124 125 126
             "each sample. And it is a dispensable input. The default value of "
             "sample is 1.")
        .AsDispensable();
127 128

    AddInput(
129
        "CustomDistProbs",
130 131 132 133
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();
134 135 136 137 138 139 140 141 142 143 144 145 146
    AddInput(
        "CustomDistAlias",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();
    AddInput(
        "CustomDistAliasProbs",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();

W
wanghaoshuang 已提交
147
    AddOutput("Cost",
W
wanghaoshuang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
              "(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.");
    AddOutput("SampleLogits",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "Given X is  the dot product of input tensor and sampled labels' "
              "weights."
              "Then 'SampleLogits' is sigmoid(X).")
        .AsIntermediate();
    AddOutput("SampleLabels",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "")
        .AsIntermediate();
165

W
wanghaoshuang 已提交
166 167 168 169
    AddAttr<int>("num_total_classes",
                 "Total number of classes in all samples.");
    AddAttr<int>("num_neg_samples",
                 "The number of negative classes. The default value is 10.")
W
wanghaoshuang 已提交
170
        .SetDefault(10);
171 172 173 174 175 176 177 178
    AddAttr<int>("sampler",
                 "(int) Which sampler to be used to sample negative class."
                 "0: Uniform; 1: LogUniform; 2: CostumDist.")
        .SetDefault(0);
    AddAttr<int>("seed",
                 "(int) The seed used in sampler. If it is 0, "
                 "the sampler will generate a seed randomly.")
        .SetDefault(0);
179 180
    AddAttr<bool>("is_sparse", "(boolean, default false) Sparse update.")
        .SetDefault(false);
181

T
tangwei12 已提交
182 183 184
    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
185 186 187
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
T
tangwei12 已提交
188 189 190 191 192 193 194 195 196 197 198 199
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the splited table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});

W
wanghaoshuang 已提交
200 201 202 203
    AddAttr<std::vector<int>>("custom_neg_classes",
                              "This attribute only be used in unitest. Classes "
                              "in this list wiil be used as negative classes "
                              "for every samples. Under normal conditions, "
Y
Yang Yu 已提交
204 205
                              "user should avoid setting this attribute.")
        .SetDefault({});
W
wanghaoshuang 已提交
206
    AddComment(R"DOC(
M
minqiyang 已提交
207 208 209
Compute and return the noise-contrastive estimation training loss. See
`Noise-contrastive estimation: A new estimation principle for unnormalized
statistical models
Y
Yibing Liu 已提交
210
 <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_.
W
wanghaoshuang 已提交
211
By default this operator uses a uniform distribution for sampling.
W
wanghaoshuang 已提交
212 213 214 215
)DOC");
  }
};

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename T>
class NCEGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
  std::unique_ptr<T> Apply() const override {
    auto *op = new T();
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput("Weight", this->Input("Weight"));
    op->SetInput("SampleLogits", this->Output("SampleLogits"));
    op->SetInput("SampleLabels", this->Output("SampleLabels"));
    op->SetInput("SampleWeight", this->Input("SampleWeight"));
    op->SetInput("CustomDistProbs", this->Input("CustomDistProbs"));
    op->SetInput("CustomDistAlias", this->Input("CustomDistAlias"));
    op->SetInput("CustomDistAliasProbs", this->Input("CustomDistAliasProbs"));
    op->SetInput(framework::GradVarName("Cost"), this->OutputGrad("Cost"));
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetOutput(framework::GradVarName("Weight"), this->InputGrad("Weight"));
    op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(op);
  }
};

W
wanghaoshuang 已提交
242 243 244 245
class NCEOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

246
  void InferShape(framework::InferShapeContext *ctx) const override {
W
wanghaoshuang 已提交
247 248 249 250 251
    PADDLE_ENFORCE(ctx->HasInput("Input"));
    PADDLE_ENFORCE(ctx->HasInput("Weight"));
    PADDLE_ENFORCE(ctx->HasInput("SampleLogits"));
    PADDLE_ENFORCE(ctx->HasInput("SampleLabels"));
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cost")),
W
wanghaoshuang 已提交
252
                   "The input(Out@GRAD) should not be null.");
W
wanghaoshuang 已提交
253

W
wanghaoshuang 已提交
254 255
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
W
wanghaoshuang 已提交
256 257 258 259
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }

W
wanghaoshuang 已提交
260 261
    auto w_dims = ctx->GetInputDim("Weight");
    auto w_grad_name = framework::GradVarName("Weight");
W
wanghaoshuang 已提交
262 263 264 265
    if (ctx->HasOutput(w_grad_name)) {
      ctx->SetOutputDim(w_grad_name, w_dims);
    }

W
wanghaoshuang 已提交
266
    auto bias_grad_name = framework::GradVarName("Bias");
W
wanghaoshuang 已提交
267
    if (ctx->HasOutput(bias_grad_name)) {
W
wanghaoshuang 已提交
268
      auto bias_dims = ctx->GetInputDim("Bias");
W
wanghaoshuang 已提交
269 270 271
      ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
  }
W
wanghaoshuang 已提交
272 273

 protected:
274
  framework::OpKernelType GetExpectedKernelType(
275
      const framework::ExecutionContext &ctx) const override {
276 277 278
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        platform::CPUPlace());
W
wanghaoshuang 已提交
279
  }
W
wanghaoshuang 已提交
280 281
};

282 283
class NCEOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
284 285
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto weight_grad = ctx->Output(framework::GradVarName("Weight")).front();
286

M
minqiyang 已提交
287
    auto attr = ctx->GetAttr("is_sparse");
288 289
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
290
      VLOG(3) << "nce_op_grad op " << weight_grad << " and "
M
minqiyang 已提交
291
              << " is set to SelectedRows";
M
minqiyang 已提交
292
      ctx->SetType(weight_grad, framework::proto::VarType::SELECTED_ROWS);
293
    } else {
294
      VLOG(3) << "nce_op_grad op " << weight_grad << " and "
M
minqiyang 已提交
295
              << " is set to LoDTensor";
M
minqiyang 已提交
296
      ctx->SetType(weight_grad, framework::proto::VarType::LOD_TENSOR);
297
    }
M
minqiyang 已提交
298
    ctx->SetDataType(weight_grad, ctx->GetDataType(ctx->Input("Input")[0]));
299 300 301
  }
};

302 303 304
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(NCEGradOpNoNeedBufferVarInference,
                                      "Bias");

W
wanghaoshuang 已提交
305 306 307 308
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
309 310 311
REGISTER_OPERATOR(nce, ops::NCEOp, ops::NCEOpMaker,
                  ops::NCEGradOpMaker<paddle::framework::OpDesc>,
                  ops::NCEGradOpMaker<paddle::imperative::OpBase>);
312 313
REGISTER_OPERATOR(nce_grad, ops::NCEOpGrad, ops::NCEOpGradVarTypeInference,
                  ops::NCEGradOpNoNeedBufferVarInference);
W
wanghaoshuang 已提交
314 315
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEKernel<paddle::platform::CPUPlace, double>);
W
wanghaoshuang 已提交
316
REGISTER_OP_CPU_KERNEL(nce_grad,
W
wanghaoshuang 已提交
317 318
                       ops::NCEGradKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEGradKernel<paddle::platform::CPUPlace, double>);