test_mul_op.py 4.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15 16
import unittest
import numpy as np
17
import paddle.fluid.core as core
Q
qijun 已提交
18
from op_test import OpTest
Q
qijun 已提交
19 20


Q
qijun 已提交
21
class TestMulOp(OpTest):
Q
qijun 已提交
22
    def setUp(self):
Q
qijun 已提交
23
        self.op_type = "mul"
24
        self.use_mkldnn = False
D
dangqingqing 已提交
25 26 27 28
        self.inputs = {
            'X': np.random.random((32, 84)).astype("float32"),
            'Y': np.random.random((84, 100)).astype("float32")
        }
29
        self.attrs = {'use_mkldnn': self.use_mkldnn}
D
dangqingqing 已提交
30
        self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
Q
qijun 已提交
31

Q
qijun 已提交
32 33 34 35 36
    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
Q
qijun 已提交
37

Q
qijun 已提交
38 39 40
    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X"))
41

Q
qijun 已提交
42 43 44 45 46 47
    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y'))


class TestMulOp2(OpTest):
48
    def setUp(self):
Q
qijun 已提交
49
        self.op_type = "mul"
50
        self.use_mkldnn = False
51 52 53 54
        self.inputs = {
            'X': np.random.random((15, 4, 12, 10)).astype("float32"),
            'Y': np.random.random((4, 30, 8, 2, 9)).astype("float32")
        }
55 56 57 58 59
        self.attrs = {
            'x_num_col_dims': 2,
            'y_num_col_dims': 2,
            'use_mkldnn': self.use_mkldnn
        }
Y
Yu Yang 已提交
60 61 62 63
        result = np.dot(self.inputs['X'].reshape(15 * 4, 12 * 10),
                        self.inputs['Y'].reshape(4 * 30, 8 * 2 * 9))
        result = result.reshape(15, 4, 8, 2, 9)
        self.outputs = {'Out': result}
64

Q
qijun 已提交
65 66
    def test_check_output(self):
        self.check_output()
67

Q
qijun 已提交
68 69
    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
70

Q
qijun 已提交
71
    def test_check_grad_ingore_x(self):
72
        self.check_grad(
Q
qijun 已提交
73
            ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set('X'))
74

Q
qijun 已提交
75
    def test_check_grad_ignore_y(self):
76
        self.check_grad(
Q
qijun 已提交
77
            ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y'))
78 79


80 81 82
class TestFP16MulOp1(OpTest):
    def setUp(self):
        self.op_type = "mul"
83
        self.use_mkldnn = False
84 85 86
        x = np.random.random((32, 84)).astype("float16")
        y = np.random.random((84, 100)).astype("float16")
        self.inputs = {'X': x.view(np.uint16), 'Y': y.view(np.uint16)}
87
        self.attrs = {'use_mkldnn': self.use_mkldnn}
88 89 90 91 92 93 94 95 96 97 98 99
        self.outputs = {'Out': np.dot(x, y)}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-1)


class TestFP16MulOp2(OpTest):
    def setUp(self):
        self.op_type = "mul"
100
        self.use_mkldnn = False
101 102 103 104 105 106
        x = np.random.random((15, 4, 12, 10)).astype("float16")
        y = np.random.random((4, 30, 8, 2, 9)).astype("float16")
        self.inputs = {'X': x.view(np.uint16), 'Y': y.view(np.uint16)}
        self.attrs = {
            'x_num_col_dims': 2,
            'y_num_col_dims': 2,
107
            'use_mkldnn': self.use_mkldnn
108 109 110 111 112 113 114 115 116 117 118 119 120
        }
        result = np.dot(
            x.reshape(15 * 4, 12 * 10), y.reshape(4 * 30, 8 * 2 * 9))
        result = result.reshape(15, 4, 8, 2, 9)
        self.outputs = {'Out': result}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-1)


Q
qijun 已提交
121
if __name__ == "__main__":
Q
qijun 已提交
122
    unittest.main()