sequence_enumerate_op.cc 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h"

namespace paddle {
namespace operators {

class SequenceEnumerateOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceEnumerate");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequenceEnumerate");

    const auto x_dims = ctx->GetInputDim("X");
    const auto win_size = ctx->Attrs().Get<int>("win_size");
    ctx->SetOutputDim("Out", {x_dims[0], win_size});
    ctx->ShareLoD("X", "Out");
  }
};

class SequenceEnumerateOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(2-D phi::DenseTensor with the 2nd dimension equal to 1) "
             "Input phi::DenseTensor of SequenceEnumerate operator.");
    AddOutput("Out",
              "(2-D phi::DenseTensor with the 2nd dimension equal to win_size) "
              "Output phi::DenseTensor of SequenceEnumerate operator.");
    AddAttr<int>("win_size", "(int) The enumerate sequence window size.")
        .AddCustomChecker([](const int& win_size) {
          PADDLE_ENFORCE_GE(win_size,
                            2,
                            platform::errors::InvalidArgument(
                                "The window size should be not less than 2."
                                "Received window size is %d",
                                win_size));
        });
    AddAttr<int>("pad_value", "(int) The enumerate sequence padding value.")
        .SetDefault(0);
    AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
                  "Skip calling InferShape() function in the runtime.")
        .SetDefault(true);
    AddComment(R"DOC(
Sequence Enumerate Operator.

Generate a new sequence for the input index sequence, which enumerates all the
sub-sequences with length `win_size` of the input.
The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.

Examples:
Case 1:
  Input:
    X.lod = [[0, 3, 5]]
    X.data = [[1], [2], [3], [4], [5]]
    X.dims = [5, 1]
  Attrs:
    win_size = 2
    pad_value = 0
  Output:
    Out.lod = [[0, 3, 5]]
    Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
    Out.dims = [5, 2]

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(sequence_enumerate,
                             ops::SequenceEnumerateOp,
                             ops::SequenceEnumerateOpMaker);
PD_REGISTER_STRUCT_KERNEL(sequence_enumerate,
                          CPU,
                          ALL_LAYOUT,
                          ops::SequenceEnumerateKernel,
                          int32_t,
                          int64_t) {}