test_setitem.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

import paddle
20
from paddle.base.variable_index import _setitem_static
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


class TestSetitemInDygraph(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def test_combined_index_1(self):
        np_data = np.zeros((3, 4, 5, 6), dtype='float32')
        x = paddle.to_tensor(np_data)

        np_data[[0, 1], :, [1, 2]] = 10.0
        x[[0, 1], :, [1, 2]] = 10.0

        np.testing.assert_allclose(x.numpy(), np_data)

    def test_combined_index_2(self):
        np_data = np.ones((3, 4, 5, 6), dtype='float32')
        x = paddle.to_tensor(np_data)

        np_data[:, 1, [1, 2], 0] = 10.0
        x[:, 1, [1, 2], 0] = 10.0

        np.testing.assert_allclose(x.numpy(), np_data)

    def test_combined_index_3(self):
        np_data = np.ones((3, 4, 5, 6), dtype='int32')
        x = paddle.to_tensor(np_data)

        np_data[:, [True, False, True, False], [1, 4]] = 10
        x[:, [True, False, True, False], [1, 4]] = 10

        np.testing.assert_allclose(x.numpy(), np_data)

J
JYChen 已提交
54 55 56 57 58 59 60 61 62
    def test_index_has_range(self):
        np_data = np.ones((3, 4, 5, 6), dtype='int32')
        x = paddle.to_tensor(np_data)

        np_data[:, range(3), [1, 2, 4]] = 10
        x[:, range(3), [1, 2, 4]] = 10

        np.testing.assert_allclose(x.numpy(), np_data)

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    def test_indexing_with_bool_list1(self):
        # test bool-list indexing when axes num less than x.rank
        np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
        np_data[[True, False, True], [False, False, False, True]] = 7

        x = paddle.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
        x[[True, False, True], [False, False, False, True]] = 7

        np.testing.assert_allclose(x.numpy(), np_data)

    def test_indexing_with_bool_list2(self):
        # test bool-list indexing when axes num less than x.rank
        np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
        np_data[
            [True, False, True],
            [False, False, True, False],
            [True, False, False, True, False],
        ] = 8

        x = paddle.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
        x[
            [True, False, True],
            [False, False, True, False],
            [True, False, False, True, False],
        ] = 8

        np.testing.assert_allclose(x.numpy(), np_data)

    def test_indexing_is_multi_dim_list(self):
        # indexing is multi-dim int list, should be treat as one index, like numpy>=1.23
        np_data = np.arange(3 * 4 * 5 * 6).reshape((6, 5, 4, 3))
        np_data[np.array([[2, 3, 4], [1, 2, 5]])] = 100

        x = paddle.arange(3 * 4 * 5 * 6).reshape((6, 5, 4, 3))
        x[[[2, 3, 4], [1, 2, 5]]] = 100

        np.testing.assert_allclose(x.numpy(), np_data)

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

class TestSetitemInStatic(unittest.TestCase):
    def setUp(self):
        paddle.enable_static()
        self.exe = paddle.static.Executor()

    def test_combined_index_1(self):
        # int tensor + slice (without decreasing axes)
        np_data = np.zeros((3, 4, 5, 6), dtype='float32')
        np_data[[0, 1], :, [1, 2]] = 10.0
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.zeros((3, 4, 5, 6), dtype='float32')
            y = _setitem_static(
                x, ([0, 1], slice(None, None, None), [1, 2]), 10.0
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_data)

    def test_combined_index_2(self):
        # int tensor + slice (with decreasing axes)
        np_data = np.ones((3, 4, 5, 6), dtype='float32')
        np_data[:, 1, [1, 2], 0] = 10.0
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.ones((3, 4, 5, 6), dtype='float32')
            y = _setitem_static(
                x, (slice(None, None, None), 1, [1, 2], 0), 10.0
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_data)

    def test_combined_index_3(self):
        # int tensor + bool tensor + slice (without decreasing axes)
        np_data = np.ones((3, 4, 5, 6), dtype='int32')
        np_data[:, [True, False, True, False], [1, 4]] = 10
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.ones((3, 4, 5, 6), dtype='int32')
            y = _setitem_static(
                x,
                (slice(None, None, None), [True, False, True, False], [1, 4]),
                10,
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_data)

    def test_combined_index_4(self):
        # int tensor (with ranks > 1) + bool tensor + slice (with decreasing axes)
        np_data = np.ones((3, 4, 5, 6), dtype='int32')
        np_data[[0, 0], [True, False, True, False], [[0, 2], [1, 4]], 4] = 16
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.ones((3, 4, 5, 6), dtype='int32')
            y = _setitem_static(
                x,
                ([0, 0], [True, False, True, False], [[0, 2], [1, 4]], 4),
                16,
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_data)

    def test_combined_index_5(self):
        # int tensor + slice + Ellipsis
        np_data = np.ones((3, 4, 5, 6), dtype='int32')
        np_data[..., [1, 4, 3], ::2] = 5
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.ones((3, 4, 5, 6), dtype='int32')
            y = _setitem_static(
                x,
                (..., [1, 4, 3], slice(None, None, 2)),
                5,
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_data)
J
JYChen 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

    def test_index_has_range(self):
        np_data = np.ones((3, 4, 5, 6), dtype='int32')
        np_data[:, range(3), [1, 2, 4]] = 10
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.ones((3, 4, 5, 6), dtype='int32')
            y = _setitem_static(
                x,
                (slice(None, None), range(3), [1, 2, 4]),
                10,
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_data)
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

    def test_indexing_with_bool_list1(self):
        # test bool-list indexing when axes num less than x.rank
        np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
        np_data[[True, False, True], [False, False, False, True]] = 7

        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
            y = _setitem_static(
                x, ([True, False, True], [False, False, False, True]), 7
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_data)

    def test_indexing_with_bool_list2(self):
        # test bool-list indexing when axes num less than x.rank
        np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
        np_data[
            [True, False, True],
            [False, False, True, False],
            [True, False, False, True, False],
        ] = 8
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
            y = _setitem_static(
                x,
                (
                    [True, False, True],
                    [False, False, True, False],
                    [True, False, False, True, False],
                ),
                8,
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_data)

    def test_indexing_is_multi_dim_list(self):
        # indexing is multi-dim int list, should be treat as one index, like numpy>=1.23
        np_data = np.arange(3 * 4 * 5 * 6).reshape((6, 5, 4, 3))
        np_data[np.array([[2, 3, 4], [1, 2, 5]])] = 10
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.arange(3 * 4 * 5 * 6).reshape((6, 5, 4, 3))
            y = _setitem_static(x, [[[2, 3, 4], [1, 2, 5]]], 10)

            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_data)