concat_test.cc 8.2 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/concat.h"
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/framework/tensor_util.h"

using namespace paddle::framework;
using namespace paddle::platform;

template <typename DeviceContext, typename Place>
void testConcat() {
  Tensor input_a_cpu;
  Tensor input_b_cpu;
  Tensor out_cpu;
  Tensor input_a;
  Tensor input_b;
  Tensor out;

  DeviceContext* context = new DeviceContext(Place());
  //  DeviceContext context(Place());

  /**
   * cast1:
   *    inputs:
   *        t_a.shape: [2, 3, 4]
   *        t_b.shape: [3, 3, 4]
   *    output:
   *        out.shape: [5, 3, 4]
   */
  auto dim_a = make_ddim({2, 3, 4});
  auto dim_b = make_ddim({3, 3, 4});
  auto dim_out = make_ddim({5, 3, 4});

  input_a.mutable_data<int>(dim_a, Place());
  input_b.mutable_data<int>(dim_b, Place());
  out.mutable_data<int>(dim_out, Place());

  if (paddle::platform::is_gpu_place(Place())) {
    input_a_cpu.mutable_data<int>(dim_a, CPUPlace());
    input_b_cpu.mutable_data<int>(dim_b, CPUPlace());
    out_cpu.mutable_data<int>(dim_out, CPUPlace());
  }

  int* a_ptr;
  int* b_ptr;
  if (paddle::platform::is_gpu_place(Place())) {
    a_ptr = input_a_cpu.data<int>();
    b_ptr = input_b_cpu.data<int>();
  } else {
    a_ptr = input_a.data<int>();
    b_ptr = input_b.data<int>();
  }

  for (int i = 0; i < 2 * 3 * 4; ++i) {
    a_ptr[i] = i;
  }
  for (int i = 0; i < 3 * 3 * 4; ++i) {
    b_ptr[i] = i;
  }

  if (paddle::platform::is_gpu_place(Place())) {
F
fengjiayi 已提交
75 76
    TensorCopySync(input_a_cpu, Place(), &input_a);
    TensorCopySync(input_b_cpu, Place(), &input_b);
C
chengduoZH 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  }

  std::vector<Tensor> input;
  input.push_back(input_a);
  input.push_back(input_b);

  paddle::operators::math::ConcatFunctor<DeviceContext, int> concat_functor;
  concat_functor(*context, input, 0, &out);

  // check the dim of input_a, input_b
  PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
  PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);

  int* out_ptr;
  if (paddle::platform::is_gpu_place(Place())) {
F
fengjiayi 已提交
92
    TensorCopySync(out, CPUPlace(), &out_cpu);
C
chengduoZH 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    out_ptr = out_cpu.data<int>();
  } else {
    out_ptr = out.data<int>();
  }

  int cols = 2 * 3 * 4;
  int idx_a = 0, idx_b = 0;
  for (int j = 0; j < 5 * 3 * 4; ++j) {
    if (j >= cols) {
      PADDLE_ENFORCE_EQ(out_ptr[j], b_ptr[idx_b]);
      ++idx_b;
    } else {
      PADDLE_ENFORCE_EQ(out_ptr[j], a_ptr[idx_a]);
      ++idx_a;
    }
  }
  //
  /**
    * cast2:
    *    inputs:
    *        t_a.shape: [2, 3, 4]
    *        t_b.shape: [2, 4, 4]
    *    output:
    *        out.shape: [2, 7, 4]
    */
  dim_a = make_ddim({2, 3, 4});
  dim_b = make_ddim({2, 4, 4});
  dim_out = make_ddim({2, 7, 4});

  input_a.Resize(dim_a);
  input_b.Resize(dim_b);
  out.Resize(dim_out);
  if (paddle::platform::is_gpu_place(Place())) {
    input_a_cpu.Resize(dim_a);
    input_b_cpu.Resize(dim_b);
    out_cpu.Resize(dim_out);
  }

  if (paddle::platform::is_gpu_place(Place())) {
    a_ptr = input_a_cpu.data<int>();
    b_ptr = input_b_cpu.data<int>();
  } else {
    a_ptr = input_a.data<int>();
    b_ptr = input_b.data<int>();
  }

  for (int i = 0; i < 2 * 3 * 4; ++i) {
    a_ptr[i] = i;
  }
  for (int i = 0; i < 2 * 4 * 4; ++i) {
    b_ptr[i] = i;
  }

  if (paddle::platform::is_gpu_place(Place())) {
F
fengjiayi 已提交
147 148
    TensorCopySync(input_a_cpu, Place(), &input_a);
    TensorCopySync(input_b_cpu, Place(), &input_b);
C
chengduoZH 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161
  }

  input.clear();
  input.push_back(input_a);
  input.push_back(input_b);

  concat_functor(*context, input, 1, &out);

  // check the dim of input_a, input_b
  PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
  PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);

  if (paddle::platform::is_gpu_place(Place())) {
F
fengjiayi 已提交
162
    TensorCopySync(out, CPUPlace(), &out_cpu);
C
chengduoZH 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    out_ptr = out_cpu.data<int>();
  } else {
    out_ptr = out.data<int>();
  }

  cols = 3 * 4;
  idx_a = 0, idx_b = 0;
  for (int i = 0; i < 2; ++i) {
    for (int j = 0; j < 28; ++j) {
      if (j >= cols) {
        PADDLE_ENFORCE_EQ(out_ptr[i * 28 + j], b_ptr[idx_b]);
        ++idx_b;
      } else {
        PADDLE_ENFORCE_EQ(out_ptr[i * 28 + j], a_ptr[idx_a]);
        ++idx_a;
      }
    }
  }

  /**
    * cast3:
    *    inputs:
    *        t_a.shape: [2, 3, 5]
    *        t_b.shape: [2, 3, 4]
    *    output:
    *        out.shape: [2, 3, 9]
    */
  dim_a = make_ddim({2, 3, 4});
  dim_b = make_ddim({2, 3, 5});
  dim_out = make_ddim({2, 3, 9});

  input_a.Resize(dim_a);
  input_b.Resize(dim_b);
  out.Resize(dim_out);
  if (paddle::platform::is_gpu_place(Place())) {
    input_a_cpu.Resize(dim_a);
    input_b_cpu.Resize(dim_b);
    out_cpu.Resize(dim_out);
  }

  if (paddle::platform::is_gpu_place(Place())) {
    a_ptr = input_a_cpu.data<int>();
    b_ptr = input_b_cpu.data<int>();
  } else {
    a_ptr = input_a.data<int>();
    b_ptr = input_b.data<int>();
  }

  for (int i = 0; i < 2 * 3 * 4; ++i) {
    a_ptr[i] = i;
  }
  for (int i = 0; i < 2 * 3 * 5; ++i) {
    b_ptr[i] = i;
  }

  if (paddle::platform::is_gpu_place(Place())) {
F
fengjiayi 已提交
219 220
    TensorCopySync(input_a_cpu, Place(), &input_a);
    TensorCopySync(input_b_cpu, Place(), &input_b);
C
chengduoZH 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233
  }

  input.clear();
  input.push_back(input_a);
  input.push_back(input_b);

  concat_functor(*context, input, 2, &out);

  // check the dim of input_a, input_b
  PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
  PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);

  if (paddle::platform::is_gpu_place(Place())) {
F
fengjiayi 已提交
234
    TensorCopySync(out, CPUPlace(), &out_cpu);
C
chengduoZH 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    out_ptr = out_cpu.data<int>();
  } else {
    out_ptr = out.data<int>();
  }

  // check the data
  cols = 4;
  idx_a = 0, idx_b = 0;
  for (int i = 0; i < 6; ++i) {
    for (int j = 0; j < 9; ++j) {
      if (j >= cols) {
        PADDLE_ENFORCE_EQ(out_ptr[i * 9 + j], b_ptr[idx_b]);
        ++idx_b;
      } else {
        PADDLE_ENFORCE_EQ(out_ptr[i * 9 + j], a_ptr[idx_a]);
        ++idx_a;
      }
    }
  }
C
chengduoZH 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

  /**
    * cast4:
    *    inputs:
    *        axis = 1
    *        t_a.shape: [2, 3, 4]
    *        t_b.shape: [2, 3, 4]
    *    output:
    *        out.shape: [2, 6, 4]
    */
  dim_a = make_ddim({2, 3, 4});
  dim_b = make_ddim({2, 3, 4});
  dim_out = make_ddim({2, 6, 4});

  input_a.Resize(dim_a);
  input_b.Resize(dim_b);
  out.Resize(dim_out);
  if (paddle::platform::is_gpu_place(Place())) {
    input_a_cpu.Resize(dim_a);
    input_b_cpu.Resize(dim_b);
    out_cpu.Resize(dim_out);
  }

  if (paddle::platform::is_gpu_place(Place())) {
    a_ptr = input_a_cpu.data<int>();
    b_ptr = input_b_cpu.data<int>();
  } else {
    a_ptr = input_a.data<int>();
    b_ptr = input_b.data<int>();
  }

  for (int i = 0; i < 2 * 3 * 4; ++i) {
    a_ptr[i] = i;
  }
  for (int i = 0; i < 2 * 3 * 4; ++i) {
    b_ptr[i] = i;
  }

  if (paddle::platform::is_gpu_place(Place())) {
F
fengjiayi 已提交
293 294
    TensorCopySync(input_a_cpu, Place(), &input_a);
    TensorCopySync(input_b_cpu, Place(), &input_b);
C
chengduoZH 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307
  }

  input.clear();
  input.push_back(input_a);
  input.push_back(input_b);

  concat_functor(*context, input, 1, &out);

  // check the dim of input_a, input_b
  PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
  PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);

  if (paddle::platform::is_gpu_place(Place())) {
F
fengjiayi 已提交
308
    TensorCopySync(out, CPUPlace(), &out_cpu);
C
chengduoZH 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    out_ptr = out_cpu.data<int>();
  } else {
    out_ptr = out.data<int>();
  }

  // check the data
  cols = 12;
  idx_a = 0, idx_b = 0;
  for (int i = 0; i < 2; ++i) {
    for (int j = 0; j < 24; ++j) {
      if (j >= cols) {
        PADDLE_ENFORCE_EQ(out_ptr[i * 24 + j], b_ptr[idx_b]);
        ++idx_b;
      } else {
        PADDLE_ENFORCE_EQ(out_ptr[i * 24 + j], a_ptr[idx_a]);
        ++idx_a;
      }
    }
  }
C
chengduoZH 已提交
328 329 330 331 332 333 334 335 336
}

TEST(math, concat) {
  testConcat<paddle::platform::CPUDeviceContext, paddle::platform::CPUPlace>();
#ifdef PADDLE_WITH_CUDA
  testConcat<paddle::platform::CUDADeviceContext,
             paddle::platform::CUDAPlace>();
#endif
}