test_trt_convert_celu.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import unittest
from functools import partial
from typing import Any, Dict, List

19
import numpy as np
20 21 22
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
import paddle.inference as paddle_infer


class TrtConvertCeluTest(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        return True

    def sample_program_configs(self):
        def generate_input1(dims, attrs: List[Dict[str, Any]]):
            if dims == 1:
                return np.ones([3]).astype(np.float32)
            elif dims == 2:
                return np.ones([3, 64]).astype(np.float32)
            elif dims == 3:
                return np.ones([3, 64, 64]).astype(np.float32)
            else:
                return np.ones([1, 3, 64, 64]).astype(np.float32)

        for dims in [1, 2, 3, 4]:
            for alpha in [1.0, 2.0, 3.0]:
                self.dims = dims

                dics = [{"alpha": alpha}]

                ops_config = [
                    {
                        "op_type": "celu",
                        "op_inputs": {
                            "X": ["input_data"],
                        },
                        "op_outputs": {"Out": ["output_data"]},
                        "op_attrs": dics[0],
                    }
                ]
                ops = self.generate_op_config(ops_config)

                program_config = ProgramConfig(
                    ops=ops,
                    weights={},
                    inputs={
                        "input_data": TensorConfig(
                            data_gen=partial(generate_input1, dims, dics)
                        )
                    },
                    outputs=["output_data"],
                )

                yield program_config

    def sample_predictor_configs(
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
        def generate_dynamic_shape(attrs):
            if self.dims == 1:
                self.dynamic_shape.min_input_shape = {"input_data": [1]}
                self.dynamic_shape.max_input_shape = {"input_data": [128]}
                self.dynamic_shape.opt_input_shape = {"input_data": [64]}
            elif self.dims == 2:
                self.dynamic_shape.min_input_shape = {"input_data": [1, 32]}
                self.dynamic_shape.max_input_shape = {"input_data": [4, 64]}
                self.dynamic_shape.opt_input_shape = {"input_data": [3, 64]}
            elif self.dims == 3:
                self.dynamic_shape.min_input_shape = {"input_data": [1, 32, 32]}
                self.dynamic_shape.max_input_shape = {
                    "input_data": [10, 64, 64]
                }
                self.dynamic_shape.opt_input_shape = {"input_data": [3, 64, 64]}
            else:
                self.dynamic_shape.min_input_shape = {
                    "input_data": [1, 3, 32, 32]
                }
                self.dynamic_shape.max_input_shape = {
                    "input_data": [4, 3, 64, 64]
                }
                self.dynamic_shape.opt_input_shape = {
                    "input_data": [1, 3, 64, 64]
                }

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(attrs, dynamic_shape):
            if self.dims == 1:
                return 0, 3
            return 1, 2

        attrs = [
            program_config.ops[i].attrs for i in range(len(program_config.ops))
        ]

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, False
        ), 1e-5
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, False
        ), (1e-3, 1e-3)

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, True
        ), 1e-5
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, True
        ), (1e-3, 1e-3)

    def test(self):
        self.run_test()


if __name__ == "__main__":
    unittest.main()